
- •Глава 1. Структурная организация и принципы функционирования белков Основные проявления жизни - результат функционирования белков
- •Аминокислоты - главные составные части белков
- •Свойства аминокислот - основа свойств белков
- •Спектроскопические свойства аминокислот
- •Химические реакции
- •Методы разделения аминокислот
- •Аминокислота, полипептид, белок
- •Свойства белков определяются свойствами аминокислот
- •Знание иэт важно для разделения белков методом электрофореза
- •Гель-электрофорез
- •Белки выполняют роль буферных систем
- •Белки в воде образуют растворы с особыми свойствами
- •В пространственой структуре белков выделяют четыре уровня организации
- •Исследование первичной структуры белков и пептидов
- •Искусственный синтез белков и пептидов
- •Пространственная структура белковой молекулы
- •Вторичная структура белков
- •Третичная структура белков
- •Четвертичная структура белков
- •Белки чувствительны к внешним воздействиям
- •Для определения количества белков используют разные подходы
- •Белки классифицируются разными способами
- •Простые белки построены только из аминокислот
- •Сложные белки содержат небелковые компоненты
- •Глава 2. Ферменты Клинико-лабораторное значение
- •Немного истории
- •В основе классификации ферментов - тип катализируемой реакции
- •Элементы химической логики
- •В основе химических реакций лежит образование и разрыв химических связей
- •У химической реакции есть скорость и порядок
- •На пути к пониманию механизма действия фермента
- •Ферменты – биологические катализаторы белковой природы
- •Методы выделения и очистки ферментов - это методы выделения и очистки белков.
- •Пример вычисления активности фермента:
- •Для работы некоторых ферментов необходимы дополнительные небелковые соединения
- •Белковая природа определяет многие свойства ферментов
- •Повышение температуры неоднозначно влияет на активность фермента
- •Ферменты характеризуются высокой специфичностью
- •Активность фермента зависит от концентрации субстратов.
- •Важной качественной характеристикой фермента является константа Михаэлиса
- •Уравнение Михаэлиса и Ментен графически – прямоугольная гипербола
- •Примеры использования данных кинетических исследований ферментов в медицине
- •Кинетика мультисубстратных реакций
- •Скорость реакции зависит от концентрации фермента
- •Химические реакции протекают медленно
- •Ферменты превосходят другие катализаторы своей молекулярной активностью. Почему?
- •Группы активного центра фермента используют обычные химические принципы катализа
- •Реакции, катализируемые ферментами – основной объект, на который направлено действие регуляторов процессов жизнедеятельности
- •Активность ферментов можно тормозить (ингибировать)
- •Ингибиторы бывают разные: обратимые и необратимые
- •Обратимые ингибиторы могут быть конкурентными и неконкурентными
- •Конкурентные ингибиторы не всегда структурно подобны субстрату.
- •Конкурентные ингибиторы не влияют на Vmax, они понижают Км.
- •Принципы конкурентного торможения находят применение в медицинской практике.
- •Смешанные неконкурентные ингибиторы
- •Кинетика смешанных неконкурентных ингибиторов
- •Неконкурентные ингибиторы не могут связаться со свободным ферментом.
- •Неконкурентных ингибиторы неактивны при низких концентрациях субстрата.
- •Торможение продуктом реакции- пример конкурентного торможения.
- •Субстрат может быть ингибитором фермента
- •Кинетика многих ферментов не подчиняется принципам кинетики Михаэлиса и Ментен
- •У аллостерических ферментов особые свойства
- •Две модели объясняют механизмы аллостерии.
- •В основе связывания субстрата - индуцированное взаимодействие.
- •Изменение конформации одной субъединицы индуцирует изменения структуры другой
- •Какая гипотеза является правильной?
- •Ферменты неравномерно распределены внутри клеток
- •Доступность субстрата или кофактора - важный элемент регуляции активности ферментов
- •Нарушение функции фермента вызывает болезнь.
- •Энзимопатии следствие ошибок в синтезе белков.
- •Исследование активности ферментов помогает врачу в диагностике болезней.
- •Некоторые примеры использования измерения активности ферментов в диагностике
- •Определение концентрации субстратов возможно при помощи ферментов.
- •Ферменты можно использовать как лекарственные препараты.
- •Рибозимы –исключение , подтверждающее правило.
- •Методы молекулярной инженерии позволяют конструировать новые ферменты
- •Глава 3. Витамины
- •Классификация витаминов
- •Нарушение баланса витаминов в организме
- •Потребность организма человека в витаминах.
- •Причины дисбаланса витаминов в организме.
- •Межвитаминные взаимоотношения
- •Витамин в1 (Tиамин. Антиневритный витамин)
- •Витамин в2(Рибофлавин).
- •Пантотеновая кислота (витамин в3).
- •Витамин рр (Витамин в5 , никотиновая кислота, никотинамид, ниацин). Антипеллагрический витамин.
- •Гомоцис- Серин Цистатионин α-кетобутират Цистеин
- •Фолиевая кислота (Фолацин. Витамин в9. Витамин вс).
- •Фолиевая кислота
- •Метилен-тгфк- Метилен-тгфк-
- •Биотин (витамин н).
- •Пропионил-КоА метилмалонил-КоА
- •Метилмалонил-КоА пируват пропионил-КоА оксалацетат
- •Витамин с (аскорбиновая кислота), антицинготный
- •Остаток глутаминовой кислоты Остаток γ-карбоксиглутаминовой кислоты
- •Рибосомы на мембране эндо-
- •Сигнальный пептид
- •Витаминоподобные соединения Витамин f (эссенциальные жирные кислоты)
- •Инозит(Витамин в8)
- •Карнитин
- •Липоевая кислота (витамин n)
- •Пара-Аминобензойная кислота.
- •Витамин u
- •Холин (витамин в4).
- •Ацетилхолинэстераза н2о
- •Глава 4. Введение в термодинамику Биомедицинское значение.
- •Биоэнергетика- составная часть термодинамики
- •Функции состояния системы.
- •Первый закон термодинамики утверждает энергия вселенной не исчезает
- •Второй закон термодинамики указывает на вероятность и направление процесса
- •Свободная энергия и концентрация. Стандартное состояние в биологических реакциях.
- •Изменение свободной энергии и константа равновесия.
- •Примеры вычисления констант равновесия и изменений свободной энергии
- •Сопряженные реакции лежат в основе многих химических процессов в клетке.
- •«Энергетической валютой» клетки является атф
Липоевая кислота (витамин n)
Х
+Н+
Липоевая
кислота
Дигидролипоевая
кислота Н
Н
Метаболизм. Липоевая кислота легко всасывается и в клетках организма включается в состав ферментов (липоевая кислота своей карбоксильной группой присоединяется к εNH2-группе лизина фермента) в качестве кофермента.
До настоящего времени дискутируется вопрос о том, следует ли считать липоевую кислоту витамином для человека (в печени крысы она может синтезироваться в незначительных количествах).
Биохимические функции. Роль липоевой кислоты заключается в следующем:
Липоевая кислота является коферментом(одним из пяти)пируват – иα- кетоглутарат- дегидрогеназ.Эти мультиферменты осуществляют реакции окислительного декарбоксилирования названных кетокислот. Пируватдегидрогеназная реакция является ключевой в обмене глюкозы, а α- кетоглутаратдегидрогеназа – один из ферментов центрального метаболического пути клетки (цикла Кребса). В этих реакциях липоевая кислота выполняет роль переносчика электронов и ацильных групп.
Липоевая кислота – идеальный антиоксидант. Обнаружена её высокая эффективность в защите организма от повреждающего действия радиации и токсинов. Она устраняет свободные радикалы, образующиеся при окислении пирувата в митохондриях,реактивирует другие антиоксиданты– витамины Е и С, а также тиоредоксин и глутатион (глутатион-SH– трипептид, наряду с аскорбатом он является основным водорастворимым антиоксидантом клетки). Липоевая кислота предохраняет от перекисной модификации атерогенные липопротеины (ЛПНП). Синергичное действие липоевой кислоты с витаминами Е и С является мощной протекцией атеросклероза.
Известно, что экспрессия сегмента гена иммунодефицита человека, который является причиной СПИДа, зависит от множества клеточных факторов транскрипции, один из которых называется ядерным фактором «kappaB». Этот и другие ядерные факторы могут быть активированы свободными радикалами. Липоевая кислота способнаподавлять активацию«вредоносных»генов, вызываемую продуктами свободнорадикального окисления. Поскольку сходная активация ненормальной экспрессии генов лежит в основе канцерогенеза, липоевая кислота играет определённую роль в профилактике рака.
Липоевая кислота увеличивает эффективность утилизацииглюкозы клетками (путём влияния на белок-транспортёр глюкозы Т1), ингибирует деградацию инсулина, снижает уровень гликозилирования белков– отсюда понятна эффективность применения липоевой кислоты при сахарном диабете.
Гипо- и гипервитаминозлипоевой кислоты для человека не описаны. Липоевая кислота малотоксична, её наиболее распространённой профилактической формой назначения является липоамид.
Оценка обеспеченности организма липоевой кислотой. Микробиологические методы являются пока единственно приемлемыми для определения общего липоата в биологических объектах.
Суточная потребность. Пищевые источники. Наиболее богаты липоевой кислотой дрожжи, мясные продукты, молоко. Суточная потребность предположительно 1-2 мг.