
- •Глава 1. Структурная организация и принципы функционирования белков Основные проявления жизни - результат функционирования белков
- •Аминокислоты - главные составные части белков
- •Свойства аминокислот - основа свойств белков
- •Спектроскопические свойства аминокислот
- •Химические реакции
- •Методы разделения аминокислот
- •Аминокислота, полипептид, белок
- •Свойства белков определяются свойствами аминокислот
- •Знание иэт важно для разделения белков методом электрофореза
- •Гель-электрофорез
- •Белки выполняют роль буферных систем
- •Белки в воде образуют растворы с особыми свойствами
- •В пространственой структуре белков выделяют четыре уровня организации
- •Исследование первичной структуры белков и пептидов
- •Искусственный синтез белков и пептидов
- •Пространственная структура белковой молекулы
- •Вторичная структура белков
- •Третичная структура белков
- •Четвертичная структура белков
- •Белки чувствительны к внешним воздействиям
- •Для определения количества белков используют разные подходы
- •Белки классифицируются разными способами
- •Простые белки построены только из аминокислот
- •Сложные белки содержат небелковые компоненты
- •Глава 2. Ферменты Клинико-лабораторное значение
- •Немного истории
- •В основе классификации ферментов - тип катализируемой реакции
- •Элементы химической логики
- •В основе химических реакций лежит образование и разрыв химических связей
- •У химической реакции есть скорость и порядок
- •На пути к пониманию механизма действия фермента
- •Ферменты – биологические катализаторы белковой природы
- •Методы выделения и очистки ферментов - это методы выделения и очистки белков.
- •Пример вычисления активности фермента:
- •Для работы некоторых ферментов необходимы дополнительные небелковые соединения
- •Белковая природа определяет многие свойства ферментов
- •Повышение температуры неоднозначно влияет на активность фермента
- •Ферменты характеризуются высокой специфичностью
- •Активность фермента зависит от концентрации субстратов.
- •Важной качественной характеристикой фермента является константа Михаэлиса
- •Уравнение Михаэлиса и Ментен графически – прямоугольная гипербола
- •Примеры использования данных кинетических исследований ферментов в медицине
- •Кинетика мультисубстратных реакций
- •Скорость реакции зависит от концентрации фермента
- •Химические реакции протекают медленно
- •Ферменты превосходят другие катализаторы своей молекулярной активностью. Почему?
- •Группы активного центра фермента используют обычные химические принципы катализа
- •Реакции, катализируемые ферментами – основной объект, на который направлено действие регуляторов процессов жизнедеятельности
- •Активность ферментов можно тормозить (ингибировать)
- •Ингибиторы бывают разные: обратимые и необратимые
- •Обратимые ингибиторы могут быть конкурентными и неконкурентными
- •Конкурентные ингибиторы не всегда структурно подобны субстрату.
- •Конкурентные ингибиторы не влияют на Vmax, они понижают Км.
- •Принципы конкурентного торможения находят применение в медицинской практике.
- •Смешанные неконкурентные ингибиторы
- •Кинетика смешанных неконкурентных ингибиторов
- •Неконкурентные ингибиторы не могут связаться со свободным ферментом.
- •Неконкурентных ингибиторы неактивны при низких концентрациях субстрата.
- •Торможение продуктом реакции- пример конкурентного торможения.
- •Субстрат может быть ингибитором фермента
- •Кинетика многих ферментов не подчиняется принципам кинетики Михаэлиса и Ментен
- •У аллостерических ферментов особые свойства
- •Две модели объясняют механизмы аллостерии.
- •В основе связывания субстрата - индуцированное взаимодействие.
- •Изменение конформации одной субъединицы индуцирует изменения структуры другой
- •Какая гипотеза является правильной?
- •Ферменты неравномерно распределены внутри клеток
- •Доступность субстрата или кофактора - важный элемент регуляции активности ферментов
- •Нарушение функции фермента вызывает болезнь.
- •Энзимопатии следствие ошибок в синтезе белков.
- •Исследование активности ферментов помогает врачу в диагностике болезней.
- •Некоторые примеры использования измерения активности ферментов в диагностике
- •Определение концентрации субстратов возможно при помощи ферментов.
- •Ферменты можно использовать как лекарственные препараты.
- •Рибозимы –исключение , подтверждающее правило.
- •Методы молекулярной инженерии позволяют конструировать новые ферменты
- •Глава 3. Витамины
- •Классификация витаминов
- •Нарушение баланса витаминов в организме
- •Потребность организма человека в витаминах.
- •Причины дисбаланса витаминов в организме.
- •Межвитаминные взаимоотношения
- •Витамин в1 (Tиамин. Антиневритный витамин)
- •Витамин в2(Рибофлавин).
- •Пантотеновая кислота (витамин в3).
- •Витамин рр (Витамин в5 , никотиновая кислота, никотинамид, ниацин). Антипеллагрический витамин.
- •Гомоцис- Серин Цистатионин α-кетобутират Цистеин
- •Фолиевая кислота (Фолацин. Витамин в9. Витамин вс).
- •Фолиевая кислота
- •Метилен-тгфк- Метилен-тгфк-
- •Биотин (витамин н).
- •Пропионил-КоА метилмалонил-КоА
- •Метилмалонил-КоА пируват пропионил-КоА оксалацетат
- •Витамин с (аскорбиновая кислота), антицинготный
- •Остаток глутаминовой кислоты Остаток γ-карбоксиглутаминовой кислоты
- •Рибосомы на мембране эндо-
- •Сигнальный пептид
- •Витаминоподобные соединения Витамин f (эссенциальные жирные кислоты)
- •Инозит(Витамин в8)
- •Карнитин
- •Липоевая кислота (витамин n)
- •Пара-Аминобензойная кислота.
- •Витамин u
- •Холин (витамин в4).
- •Ацетилхолинэстераза н2о
- •Глава 4. Введение в термодинамику Биомедицинское значение.
- •Биоэнергетика- составная часть термодинамики
- •Функции состояния системы.
- •Первый закон термодинамики утверждает энергия вселенной не исчезает
- •Второй закон термодинамики указывает на вероятность и направление процесса
- •Свободная энергия и концентрация. Стандартное состояние в биологических реакциях.
- •Изменение свободной энергии и константа равновесия.
- •Примеры вычисления констант равновесия и изменений свободной энергии
- •Сопряженные реакции лежат в основе многих химических процессов в клетке.
- •«Энергетической валютой» клетки является атф
Рибосомы на мембране эндо-
плазматического ретикулума
Сигнальный пептид
Рис. Биосинтез витамин К-зависимых белков
В связи с участием витамина К в остеосинтезе можно полагать, что недостаток витамина К играет роль в развитии остеопороза, т.е. разрежения и истончения структуры кости.
Врождённые нарушения обмена витамина К.
Врождённый дефицит факторов II (протромбина), VII, IX и X. В основе заболевания лежит дефект синтеза контролируемых витамином К белков свёртывающей системы крови. Резко увеличивается протромбиновое время.
Врождённая резистентность к антагонистам витамина К. В основе заболевания лежит генетическая мутация структуры белкового рецептора, связывающего витамин К и его антагонисты. Вследствие этого возникает повышенная потребность в витамине и увеличивается резистентность организма к антикоагулянтам.
Гипервитаминоз К не описан.
Оценка обеспеченности организма витамином К. Определение содержания витамина К осуществляется физико-химическими, радиоизотопными и биологическими методами (в эксперименте на животных).
Суточная потребность. Пищевые источники. Витамина К много в капусте, зелёных томатах, шпинате, ягодах рябины. Из животных продуктов его источником является печень.
Потребность – приблизительно 0,1 мг/сутки.
Витаминоподобные соединения Витамин f (эссенциальные жирные кислоты)
Витамином F называют ненасыщенные жирные кислоты, которые не могут синтезироваться тканями организма. К ним относятся линолевая и линоленовая кислоты:
Линолевая
кислота Линоленовая
кислота
Метаболизм. Линолевая (ω6) и линоленовая (ω3) жирные кислоты всасываются и транспортируются в составе хиломикронов подобно всем длинноцепочечным жирным кислотам. В клетке они встраиваются в биомембраны, а также принимают участие в метаболизме и его регуляции. В реакциях биотрансформации часть их двойных связей восстанавливается.
Витамин F крайне нестоек, легко подвергается процессу перекисной модификации на свету и при хранении. При этом образуются весьма токсичные продукты. Естественным стабилизатором витамина F является витамин Е. Разработан эффективный способ стабилизации ненасыщенных жирных кислот с помощью β-каротинов и витаминов антиоксидантного действия.
Биохимические функции.
Биохимически функции витамина F многообразны:
Как уже упоминалось, витамин F – структурный компонент клеточных мембран. Ненасыщенные жирные кислоты входят в состав сложных липидов.
Линолевая кислота (ω6) является предшественником арахидоновой кислоты, из которой, в свою очередь, синтезируются простагландины и тромбоксаны II группы. Линоленовая кислота (ω3) служит предшественником эйкозапентоеновой кислоты, из которой синтезируются простагландины и тромбоксаны III группы. Последние оказывают противоположный по отношению к дериватам ω6 эффект, т.е. не только снижают свёртываемость крови, агрегацию тромбоцитов и стимулируют иммунозащитные реакции и противоопухолевый иммунитет, но и препятствуют высвобождению арахидоновой кислоты из фосфолипидов биомембран. Так как простагландины являются тканевыми гормонами, очевидно, что витамин F играет регуляторную роль в жизнедеятельности клеток.
Недостаточность витамина F. При недостаточности эссенциальных жирных кислот, которая обычно является следствием голодания или нарушения процесса всасывания липидов в кишечнике, развивается фолликулярный гиперкератоз (избыточное ороговение кожного эпителия вокруг волосяных фолликулов), у животных наблюдается бесплодие. В принципе, страдают многие звенья метаболизма, однако чётких критериев недостаточности витамина F не имеется.
Суточная потребность. Пищевые источники. Источником витамина F являются растительные масла, содержатся они и в животных жирах. Качественный и количественный состав входящих в состав растительного масла незаменимых жирных кислот имеет принципиальное значение в питании. Несомненно большей биологической ценностью обладают ω3 жирные кислоты. В подсолнечном масле содержится лишь около 1% линоленовой кислоты, в то время как в льняном – 70-75%. Ни одно растительное масло не может конкурировать с льняным в качестве пищевого источника ω3 жирных кислот. Из животных продуктов эссенциальные ω3 жирные кислоты в достаточном количестве содержатся лишь в свежем рыбьем жире, но и в последнем их в1,5 – 2 раза меньше, чем в льняном. Клинические испытания, проведенные во многих странах, показали высокую эффективность льняного масла как средства профилактики и лечения атеросклероза (снижение уровня холестерина и триглицеридов, антитромботическое действие), его с успехом применяют при онкологических заболеваниях, расстройствах иммунитета, в дерматологии, при сахарном диабете, в качестве желчегонного средства.
Суточная потребность в витамине F составляет 10 г, причём не менее половины из этого количества должно приходиться на ω3 жирные кислоты.