
- •Глава 1. Структурная организация и принципы функционирования белков Основные проявления жизни - результат функционирования белков
- •Аминокислоты - главные составные части белков
- •Свойства аминокислот - основа свойств белков
- •Спектроскопические свойства аминокислот
- •Химические реакции
- •Методы разделения аминокислот
- •Аминокислота, полипептид, белок
- •Свойства белков определяются свойствами аминокислот
- •Знание иэт важно для разделения белков методом электрофореза
- •Гель-электрофорез
- •Белки выполняют роль буферных систем
- •Белки в воде образуют растворы с особыми свойствами
- •В пространственой структуре белков выделяют четыре уровня организации
- •Исследование первичной структуры белков и пептидов
- •Искусственный синтез белков и пептидов
- •Пространственная структура белковой молекулы
- •Вторичная структура белков
- •Третичная структура белков
- •Четвертичная структура белков
- •Белки чувствительны к внешним воздействиям
- •Для определения количества белков используют разные подходы
- •Белки классифицируются разными способами
- •Простые белки построены только из аминокислот
- •Сложные белки содержат небелковые компоненты
- •Глава 2. Ферменты Клинико-лабораторное значение
- •Немного истории
- •В основе классификации ферментов - тип катализируемой реакции
- •Элементы химической логики
- •В основе химических реакций лежит образование и разрыв химических связей
- •У химической реакции есть скорость и порядок
- •На пути к пониманию механизма действия фермента
- •Ферменты – биологические катализаторы белковой природы
- •Методы выделения и очистки ферментов - это методы выделения и очистки белков.
- •Пример вычисления активности фермента:
- •Для работы некоторых ферментов необходимы дополнительные небелковые соединения
- •Белковая природа определяет многие свойства ферментов
- •Повышение температуры неоднозначно влияет на активность фермента
- •Ферменты характеризуются высокой специфичностью
- •Активность фермента зависит от концентрации субстратов.
- •Важной качественной характеристикой фермента является константа Михаэлиса
- •Уравнение Михаэлиса и Ментен графически – прямоугольная гипербола
- •Примеры использования данных кинетических исследований ферментов в медицине
- •Кинетика мультисубстратных реакций
- •Скорость реакции зависит от концентрации фермента
- •Химические реакции протекают медленно
- •Ферменты превосходят другие катализаторы своей молекулярной активностью. Почему?
- •Группы активного центра фермента используют обычные химические принципы катализа
- •Реакции, катализируемые ферментами – основной объект, на который направлено действие регуляторов процессов жизнедеятельности
- •Активность ферментов можно тормозить (ингибировать)
- •Ингибиторы бывают разные: обратимые и необратимые
- •Обратимые ингибиторы могут быть конкурентными и неконкурентными
- •Конкурентные ингибиторы не всегда структурно подобны субстрату.
- •Конкурентные ингибиторы не влияют на Vmax, они понижают Км.
- •Принципы конкурентного торможения находят применение в медицинской практике.
- •Смешанные неконкурентные ингибиторы
- •Кинетика смешанных неконкурентных ингибиторов
- •Неконкурентные ингибиторы не могут связаться со свободным ферментом.
- •Неконкурентных ингибиторы неактивны при низких концентрациях субстрата.
- •Торможение продуктом реакции- пример конкурентного торможения.
- •Субстрат может быть ингибитором фермента
- •Кинетика многих ферментов не подчиняется принципам кинетики Михаэлиса и Ментен
- •У аллостерических ферментов особые свойства
- •Две модели объясняют механизмы аллостерии.
- •В основе связывания субстрата - индуцированное взаимодействие.
- •Изменение конформации одной субъединицы индуцирует изменения структуры другой
- •Какая гипотеза является правильной?
- •Ферменты неравномерно распределены внутри клеток
- •Доступность субстрата или кофактора - важный элемент регуляции активности ферментов
- •Нарушение функции фермента вызывает болезнь.
- •Энзимопатии следствие ошибок в синтезе белков.
- •Исследование активности ферментов помогает врачу в диагностике болезней.
- •Некоторые примеры использования измерения активности ферментов в диагностике
- •Определение концентрации субстратов возможно при помощи ферментов.
- •Ферменты можно использовать как лекарственные препараты.
- •Рибозимы –исключение , подтверждающее правило.
- •Методы молекулярной инженерии позволяют конструировать новые ферменты
- •Глава 3. Витамины
- •Классификация витаминов
- •Нарушение баланса витаминов в организме
- •Потребность организма человека в витаминах.
- •Причины дисбаланса витаминов в организме.
- •Межвитаминные взаимоотношения
- •Витамин в1 (Tиамин. Антиневритный витамин)
- •Витамин в2(Рибофлавин).
- •Пантотеновая кислота (витамин в3).
- •Витамин рр (Витамин в5 , никотиновая кислота, никотинамид, ниацин). Антипеллагрический витамин.
- •Гомоцис- Серин Цистатионин α-кетобутират Цистеин
- •Фолиевая кислота (Фолацин. Витамин в9. Витамин вс).
- •Фолиевая кислота
- •Метилен-тгфк- Метилен-тгфк-
- •Биотин (витамин н).
- •Пропионил-КоА метилмалонил-КоА
- •Метилмалонил-КоА пируват пропионил-КоА оксалацетат
- •Витамин с (аскорбиновая кислота), антицинготный
- •Остаток глутаминовой кислоты Остаток γ-карбоксиглутаминовой кислоты
- •Рибосомы на мембране эндо-
- •Сигнальный пептид
- •Витаминоподобные соединения Витамин f (эссенциальные жирные кислоты)
- •Инозит(Витамин в8)
- •Карнитин
- •Липоевая кислота (витамин n)
- •Пара-Аминобензойная кислота.
- •Витамин u
- •Холин (витамин в4).
- •Ацетилхолинэстераза н2о
- •Глава 4. Введение в термодинамику Биомедицинское значение.
- •Биоэнергетика- составная часть термодинамики
- •Функции состояния системы.
- •Первый закон термодинамики утверждает энергия вселенной не исчезает
- •Второй закон термодинамики указывает на вероятность и направление процесса
- •Свободная энергия и концентрация. Стандартное состояние в биологических реакциях.
- •Изменение свободной энергии и константа равновесия.
- •Примеры вычисления констант равновесия и изменений свободной энергии
- •Сопряженные реакции лежат в основе многих химических процессов в клетке.
- •«Энергетической валютой» клетки является атф
Нарушение баланса витаминов в организме
Водорастворимые витамины в тканях не накапливаются (за исключением витамина В12) и поэтому должны поступать в организм ежедневно. В организме большинство из них активируется путём фосфорилирования. Активные формы в качестве коферментов участвуют в реакциях метаболизма.
Жирорастворимые витамины способны накапливаться в тканях. Их недостаточность встречается реже. При передозировке витамины А и Д проявляют токсичность. Коферментная функция (за исключением витамина К) для них не характерна. Выполняя функцию индукторов синтеза белков, жирорастворимые витамины уподобляются стероидным гормонам (ярко выраженную гормональную активность проявляют активные формы витамина Д). Все жирорастворимые витамины являются структурными компонентами клеточных мембран и проявляют антиоксидантное действие.
Гиповитаминозы.
«Витамины проявляют себя не своим присутствием, а своим отсутствием» (В.А.Энгельгардт).
Гиповитаминозом называется состояние недостаточности витамина. Он может протекать скрыто либо иметь ярко выраженный характер, проявляясь соответствующим заболеванием. Термин «авитаминоз» вряд ли правомочен, так как при полном отсутствии витамина в клетках прекращаются зависимые от него биохимические реакции, что приводит к их гибели (смерти организма). К массовой гибели людей приводили заболевания «бери-бери», пеллагра и цинга. В 1741 г. от цинги погиб первооткрыватель пролива между Азией и Европой российский мореплаватель Беринг. Жизнь отважного исследователя Севера Георгия Седова также была прервана цингой. Но случаев цинги не было при кругосветном путешествии русского адмирала Крузенштерна, который понимал важность обеспечения команды свежими фруктами и овощами.
Наиболее частыми проявлениями гиповитаминоза являются: повышенная утомляемость, раздражительность, снижение внимания и памяти, плохой аппетит, нарушение сна, трещины и язвочки на губах и в углу рта, «облысение» части языка, шелушение и гнойничковые заболевания кожи, лёгкое появление синяков на коже, кровоточивость дёсен, снижение остроты сумеречного зрения.
Гиповитаминозы могут длиться годами, не давая явно выраженных проявлений болезни, но нанося серьёзный ущерб здоровью.
Гиповитаминозный фон, характерный для большого числа практически здоровых людей, существенно усугубляется при любых заболеваниях, особенно при болезнях пищеварительной системы, когда нарушается всасывание витаминов в кишечнике и их использование в организме. Свой вклад вносит и лекарственная терапия – некоторые лекарства являются антагонистами витаминов. Многие антибиотики подавляют рост и размножение не только патогенных микроорганизмов, но и симбионтов, играющих важную роль в обеспечении организма биотином, пантотеновой кислотой, витамином К.
Недостаточная витаминная обеспеченность затрудняет лечение болезней и снижает его эффективность, что в конечном итоге способствует хронизации заболеваний. Осложняется исход хирургических операций и течение послеоперационного периода.
Как, например, отразится витаминная недостаточность на заболевании диабетом? Недостаток витамина В1, нарушая усвоение глюкозы, будет снижать эффективность вводимого инсулина. Недостаток рибофлавина, нарушая окисление жиров, будет увеличивать зависимый от инсулина процесс использования глюкозы для обеспечения энергетических потребностей организма. При дефиците витамина В6 нарушится обмен триптофана, что приведёт к накоплению ксантуреновой кислоты, образующей с инсулином неактивный комплекс. Дефицит витаминов В6, В12 и фолиевой кислоты будет приводить к нарушению обмена метионина и накоплению в плазме крови гомоцистеина, повреждающего эндотелиальные клетки кровеносных сосудов. Это будет увеличивать риск атеросклеротического поражения сосудов. Развитию осложнений при диабете будет способствовать также дефицит витаминов антиоксидантного действия.
Недостаточное потребление витаминов отрицательно сказывается на росте и развитии детей, повышает детскую смертность; ухудшает выносливость, физическую и умственную работоспособность; усиливает отрицательное воздействие на организм ионизирующей радиации и других экологически неблагоприятных факторов внешней среды; потенцирует токсический эффект алкоголя и курения. Витаминный дефицит снижает активность иммунной системы, ускоряет старение организма, увеличивает частоту возникновения злокачественных опухолей, сокращает продолжительность жизни.
2. Гипервитаминозы.Отнюдь не всякий избыток и далеко не каждого витамина способен вызвать гипервитаминоз. Болезни, возникающие вследствие избыточного приёма водорастворимых витаминов, не описаны. Поскольку они в организме не накапливаются, их передозировка невозможна (В.Б. Спиричев, В.Г.Кукес). Физиологически необходимая часть витаминов, поступивших в организм, сразу используется, а излишки экскретируются с мочой.
Известны лишь 2 витамина – А и Д, длительный приём которых в количествах, превышающих физиологическую потребность организма в десятки тысяч раз, может вызвать гипервитаминоз.
Следует заметить, однако, что любое пищевое вещество, даже вода, в чрезмерных количествах может нанести ущерб. И хотя не получило подтверждение мнение известного учёного Л. Полинга о том, что приём мегадоз витамина С (10 г/сутки) приводит к образованию оксалатных камней в почках, необходимость поступления в организм чрезмерно высоких доз аскорбата (и других витаминов) не имеет строгого научного обоснования. Некоторые витамины в количествах, превосходящих суточную норму в сотни и тысячи раз, могут вызвать неспецифические побочные эффекты в виде тошноты, диареи, покраснения кожи и других симптомов, которые проходят при отмене препаратов. Витамины не вызывают образование антител и, следовательно, аллергических реакций. Однако при парэнтеральном введении в дозах, превышающих истинную потребность организма в десятки и сотни раз, молекулы витаминов адсорбируются белками крови и формируют таким образом необычные для организма структуры, на которые антитела могут вырабатываться.
В соответствии с рекомендациями Национальной Академии наук США абсолютно безопасные уровни потребления витаминов А и Д превышают среднюю суточную потребность в 10 раз, витаминов С и В6 – в 100 раз, а витаминов Е, В1, В2 и фолиевой кислоты – более чем в 100 раз. Рекомендации Института питания РАМН имеют более осторожный характер.