
Задание для студентов на практическое №3по теме
«Основы интегрального исчисления.Методы нахождения неопределенных интегралов. Вычисление определенных интегралов»
Цель занятия: Научиться решать примеры и задачи по данной теме
Вопросы теории ( исходный уровень)
Первообразная функции и неопределённый интеграл.
Интегрирование.
Методы нахождения неопределенных интегралов: приведение к табличному виду и метод замены переменной, интегрирование по частям.
Определённый интеграл, его применение для вычисления площадей фигур и работы переменной силы.
Вычисление определенных интегралов, правило Ньютона-Лейбница.
Примеры использования интегрального исчисления в медицинских задачах. (самостоятельная подготовка)
Содержание занятия:
1.ответить на вопросы по теме занятия
2.решить примеры
Примеры
Найти интегралы:
1)
|
2)
|
3)
|
4)
|
5)
|
6)
|
7)
|
8)
|
9)
|
10)
|
11)
|
12)
|
13)
|
14)
|
15)
|
16)
|
17)
|
18)
|
19)
|
20)
|
21) |
22) |
23) |
24) |
25) |
26) |
27) |
Вычислить интегралы:
1)
|
2)
|
3)
|
4)
|
5)
|
6)
|
7)
|
8)
|
9)
|
10)
|
11)
|
12)
|
13)
|
14)
|
15)
|
16)
|
17)
|
18)
|
19)
|
21)
|
22)
|
23)
|
24)
|
25)
|
26)
|
27)
|
28)
|
29)
|
30)
|
31)
|
32)
|
33)
|
34)
|
35)
|
36)
|
37)
|
38)
|
|
|
Тема
Неопределенный интеграл
Функция F(x), имеющая данную функцию f(x) своей производной или f(x)dx своим дифференциалом, называется первообразной данной функции f(x). Совокупность всех первообразных функций для дифференциала f(x)dx называется неопределенным интегралом и обозначается символом ∫ f(x)dx.
Свойства неопределенного интеграла
∫f(x)dx=F(x)+C
∫[f(x)+φ(x)]dx=∫ f(x)dx+∫φ(x)dx
∫ d(F(x))=F(x)+C
(∫f(x)dx)=f(x)
∫f(x)dx= ∫f(t)dt
d∫f(x)dx=f(x)dx
∫af(x)dx+a∫f(x)dx
Основные интегралы
∫dx=x+C
∫xndx=xn+1/ (n+1) +C (n≠-1)
∫dx/x=ln|x|+C
∫axdx=ax/lna +C
∫exdx=ex+C
∫sin x dx=-cos x +C
∫cos xdx=sin x +C
∫dx/cos2x=tgx+C
∫dx/sin2x=-ctgx+C
∫dx/(1-x2)1/2=arcsinx=-arccosx
∫dx/(1+x2)= arctgx=- arcctgx
Интегрирование по частям
∫ udv = uv—∫ vdu.
Пример
Найти у = ∫ ln хdх.
Полагаем и=lпх, dv = dx, тогда dи =dx/x, v = x
Используя формулу интегрирования по частям, получаем
у = ∫ ln xdx = x ln х-∫ dх = xlnx-x+C
Пример метод непосредственного интегрирования
Найти у= ∫ (1+ 2x2)dx
На основании свойства интеграла суммы запишим
у= ∫ (1+ 2x2)dx = ∫ dx+2 ∫ x2dx =x+2x3/3+C
Пример; метод замены переменной( метод подстановки)
∫tgxdx=∫(sinx/cosx)dx обозначим cosx=t
Продифферинцируем праву и левую часть
-sinxdx=dt найдем dx=dt/(-sinx)
Запишим интеграл через новые переменные
∫(sinx/t) dt/(-sinx) =-∫dt/t= lnt+C или lncosx+C
Определенный интеграл
Определенный интеграл функции f(x) на отрезке [а, b] представляет предел интегральной суммы
lim∑f(ki)Δxi ( от i=1 до n и Δx→0)
где ki — произвольная точка соответствующего отрезка.
Формула Ньютона — Лейбница
где F′ — первообразная функцию f(x), т е
F′(x)=f(x)
Некоторые свойства определенного интеграла
Площадь криволинейной трапеции, ограниченной графиком функции f(x), осью абсцисс и прямыми х=а и х=b,
Площадь фигуры, ограниченной двумя кривыми y=.f1(x) и у = = f2(x) [ f'2(x)≥f1(x)] и двумя прямыми х=а и х=b,
Дифференциальные уравнения
Общий вид дифференциального уравнения
F(x ,y,y′,y″,…yn) = О
Общee решение дифференциального уравнения
y=f(x, C1,C2, , Сn)
Общий вид дифференциального уравнения первого порядка
F(x,y,y') = 0
Общее решение дифференциального уравнения первого порядка
y= f(x,C)
примеры
1 Дифференциальное уравнение типа y'=f(x)
dy/dx=f(х) , dx = f(x)dx
Общее решение
y=∫f(x)dx=F(x)+C
Дифференциальное уравнение типа
у' = f(y)
dy/dx=f(y), dy/f(y)=dx
Общее решение
∫dy/f(y)=F(y)+C
Дифференциальное уравнение с разделенными переменными
f(x) dx + φ(y)dy = 0
Общее решение
∫f(x) dx + ∫φ(y)dy = C, F(х) + Ф(у) = С
Дифференциальное уравнение с разделяющимися переменными
f(x)φ(y)dx+ψ(x)Ф(y)dy=0
Приведем это уравнение к уравнению с разделенными переменными
(f(x)/ψ(x))dx+(Ф(y)/φ(y))dy=0
Общее решение
∫(f(x)/ψ(x))dx+∫(Ф(y)/φ(y))dy=C, F1(x)+F2(y)=C
Первообразная функции и неопределенный интеграл.
Из школьного курса математики известно, что математические операции образуют пары двух взаимно обратных действий (например, сложение и вычитание, умножение и деление, возведение в целую положительную степень и извлечение корня, логарифмирование и потенцирование).
Дифференцирование дает возможность для заданной функции F(x) находить ее производную F(x) или дифференциал dF = F (x)dx.
Cуществует действие, обратное дифференцированию, интегрирование нахождение функции F(x) по известной ее производной f(x) = F(x) или дифференциалу f(x)dx.
Функцию F(x) называют первообразной функции f(x), если для всех х из области определения функции F(x) = f(x) или dF(x)=f(x)dx.
Например, функция F(x) = x5 является первообразной функции f(x) = 5x4 для х , так как при любом х (х5) = 5х4 и dx5=5x4dx.
Для функции f(x) = 5x4 первообразной будет любая функция Ф(х) = х5 + С, где С – произвольное постоянное число, так как производная постоянной равна нулю.
В общем случае, если f(x) имеет первообразную функцию F(x), совокупность F(x) + C также будет первообразной для f(x):
(F(x) + C) = F(x) = f(x).
Cовокупность первообразных F(x) + С для данной функции f(x) или данного дифференциала f(x)dx называют неопределенным интегралом от функции f(x) и обозначают f(x)dx.
По определению, f(x)dx = F(x) + C (читается «неопределенный интеграл эф от икс дэ икс»).
Выражение f(x)dx называют подынтегральным выражением, функцию f(x) – подынтегральной функцией, а С – постоянной интегрирования.
Вычисление интеграла от данной функции называется интегрированием этой функции.
Пример. Найти неопределенный интеграл от функции f(x) = cos x, если при х = 0 F(0) = 0.
Решение. Функция cos x есть производная от функции sin x, поэтому cos xdx = sin x + C. Обозначим искомую первообразную F(x) = sin x + C. Подставив в последнее выражение начальные данные x = 0 и F(0) = 0, получим 0 = sin 0 + C, откуда C = 0. Искомая первообразная F(x) = sin x.
В геометрии с помощью неопределенного интеграла по закону углового коэффициента касательной в любой точке кривой можно найти уравнение кривой.
Пример. Угловой коэффициент касательной в любой точке кривой равен её абсциссе, то есть r = x. Составить уравнение кривой.
Решение. Так как угловой коэффициент r = tg = f(x) = x, то y= xdx = = x2/2 + C есть семейство парабол, отличающихся друг от друга на постоянную С.