Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
130
Добавлен:
13.02.2016
Размер:
304.64 Кб
Скачать

Задание для студентов на практическое №3по теме

«Основы интегрального исчисления.Методы нахождения неопределенных интегралов. Вычисление определенных интегралов»

Цель занятия: Научиться решать примеры и задачи по данной теме

Вопросы теории ( исходный уровень)

  1. Первообразная функции и неопределённый интеграл.

  2. Интегрирова­ние.

  3. Методы нахождения неопределенных интегралов: приведение к табличному виду и метод замены переменной, интегрирование по частям.

  4. Определённый интеграл, его применение для вычисления площадей фигур и работы переменной силы.

  5. Вычисление определенных интегралов, правило Ньютона-Лейбница.

  6. Примеры использования интегрального исчисления в медицинских задачах. (самостоятельная подготовка)

Содержание занятия:

1.ответить на вопросы по теме занятия

2.решить примеры

Примеры

Найти интегралы:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

Вычислить интегралы:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

21)

22)

23)

24)

25)

26)

27)

28)

29)

30)

31)

32)

33)

34)

35)

36)

37)

38)

Тема

Неопределенный интеграл

Функция F(x), имеющая данную функцию f(x) своей производной или f(x)dx своим дифференциалом, называется первообразной данной функции f(x). Совокупность всех первообразных функций для дифференциала f(x)dx называется неопределенным интегра­лом и обозначается символом ∫ f(x)dx.

Свойства неопределенного интеграла

∫f(x)dx=F(x)+C

∫[f(x)+φ(x)]dx=∫ f(x)dx+∫φ(x)dx

∫ d(F(x))=F(x)+C

(∫f(x)dx)=f(x)

∫f(x)dx= ∫f(t)dt

d∫f(x)dx=f(x)dx

∫af(x)dx+a∫f(x)dx

Основные интегралы

∫dx=x+C

∫xndx=xn+1/ (n+1) +C (n≠-1)

∫dx/x=ln|x|+C

∫axdx=ax/lna +C

∫exdx=ex+C

∫sin x dx=-cos x +C

∫cos xdx=sin x +C

∫dx/cos2x=tgx+C

∫dx/sin2x=-ctgx+C

∫dx/(1-x2)1/2=arcsinx=-arccosx

∫dx/(1+x2)= arctgx=- arcctgx

Интегрирование по частям

∫ udv = uv—∫ vdu.

Пример

Найти у = ∫ ln хdх.

Полагаем и=lпх, dv = dx, тогда dи =dx/x, v = x

Используя формулу интегрирования по частям, получаем

у = ∫ ln xdx = x ln х-∫ dх = xlnx-x+C

Пример метод непосредственного интегрирования

Найти у= ∫ (1+ 2x2)dx

На основании свойства интеграла суммы запишим

у= ∫ (1+ 2x2)dx = ∫ dx+2 ∫ x2dx =x+2x3/3+C

Пример; метод замены переменной( метод подстановки)

∫tgxdx=∫(sinx/cosx)dx обозначим cosx=t

Продифферинцируем праву и левую часть

-sinxdx=dt найдем dx=dt/(-sinx)

Запишим интеграл через новые переменные

∫(sinx/t) dt/(-sinx) =-∫dt/t= lnt+C или lncosx+C

Определенный интеграл

Определенный интеграл функции f(x) на отрезке [а, b] представляет предел интегральной суммы

lim∑f(ki)Δxi ( от i=1 до n и Δx→0)

где ki — произвольная точка соответствующего отрезка.

Формула Ньютона — Лейбница

где F′ — первообразная функцию f(x), т е

F′(x)=f(x)

Некоторые свойства определенного интеграла

Площадь криволинейной трапеции, ограниченной графиком функции f(x), осью абсцисс и прямыми х=а и х=b,

Площадь фигуры, ограниченной двумя кривыми y=.f1(x) и у = = f2(x) [ f'2(x)≥f1(x)] и двумя прямыми х=а и х=b,

Дифференциальные уравнения

Общий вид дифференциального уравнения

F(x ,y,y′,y″,…yn) = О

Общee решение дифференциального уравнения

y=f(x, C1,C2, , Сn)

Общий вид дифференциального уравнения первого порядка

F(x,y,y') = 0

Общее решение дифференциального уравнения первого порядка

y= f(x,C)

примеры

1 Дифференциальное уравнение типа y'=f(x)

dy/dx=f(х) , dx = f(x)dx

Общее решение

y=∫f(x)dx=F(x)+C

Дифференциальное уравнение типа

у' = f(y)

dy/dx=f(y), dy/f(y)=dx

Общее решение

∫dy/f(y)=F(y)+C

Дифференциальное уравнение с разделенными переменными

f(x) dx + φ(y)dy = 0

Общее решение

∫f(x) dx + ∫φ(y)dy = C, F(х) + Ф(у) = С

Дифференциальное уравнение с разделяющимися переменными

f(x)φ(y)dx+ψ(x)Ф(y)dy=0

Приведем это уравнение к уравнению с разделенными переменными

(f(x)/ψ(x))dx+(Ф(y)/φ(y))dy=0

Общее решение

∫(f(x)/ψ(x))dx+∫(Ф(y)/φ(y))dy=C, F1(x)+F2(y)=C

Первообразная функции и неопределенный интеграл.

Из школьного курса математики известно, что математические операции образуют пары двух взаимно обратных действий (например, сложение и вычитание, умножение и деление, возведение в целую положительную степень и извлечение корня, логарифмирование и потенцирование).

Дифференцирование дает возможность для заданной функции F(x) находить ее производную F(x) или дифференциал dF = F (x)dx.

Cуществует действие, обратное дифференцированию, интегрирование нахождение функции F(x) по известной ее производной f(x) = F(x) или дифференциалу f(x)dx.

Функцию F(x) называют первообразной функции f(x), если для всех х из области определения функции F(x) = f(x) или dF(x)=f(x)dx.

Например, функция F(x) = x5 является первообразной функции f(x) = 5x4 для х  , так как при любом х (х5) = 5х4 и dx5=5x4dx.

Для функции f(x) = 5x4 первообразной будет любая функция Ф(х) = х5 + С, где С – произвольное постоянное число, так как производная постоянной равна нулю.

В общем случае, если f(x) имеет первообразную функцию F(x), совокупность F(x) + C также будет первообразной для f(x):

(F(x) + C) = F(x) = f(x).

Cовокупность первообразных F(x) + С для данной функции f(x) или данного дифференциала f(x)dx называют неопределенным интегралом от функции f(x) и обозначают f(x)dx.

По определению, f(x)dx = F(x) + C (читается «неопределенный интеграл эф от икс дэ икс»).

Выражение f(x)dx называют подынтегральным выражением, функцию f(x) – подынтегральной функцией, а С – постоянной интегрирования.

Вычисление интеграла от данной функции называется интегрированием этой функции.

Пример. Найти неопределенный интеграл от функции f(x) = cos x, если при х = 0 F(0) = 0.

Решение. Функция cos x есть производная от функции sin x, поэтому  cos xdx = sin x + C. Обозначим искомую первообразную F(x) = sin x + C. Подставив в последнее выражение начальные данные x = 0 и F(0) = 0, получим 0 = sin 0 + C, откуда C = 0. Искомая первообразная F(x) = sin x.

В геометрии с помощью неопределенного интеграла по закону углового коэффициента касательной в любой точке кривой можно найти уравнение кривой.

Пример. Угловой коэффициент касательной в любой точке кривой равен её абсциссе, то есть r = x. Составить уравнение кривой.

Решение. Так как угловой коэффициент r = tg = f(x) = x, то y= xdx = = x2/2 + C есть семейство парабол, отличающихся друг от друга на постоянную С.

Соседние файлы в папке практические 1 семестр