Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лабораторная работа№6.doc
Скачиваний:
71
Добавлен:
13.02.2016
Размер:
841.22 Кб
Скачать

1.1. Основные понятия гидродинамики. Условие неразрывности струи.

Гидродинамикой называют раздел физики, в котором изучают вопросы движения несжимаемых жидкостей и взаимодействие их при этом с окружающими твердыми телами.

Идеальной называется жидкость несжимаемая и не имеющая вязкости.

Течение жидкости условно изображают линиями тока - воображаемыми линиями, касательные к которым в каждой точке совпадают с направлением вектора скорости частиц, а их густота пропорциональна значению скорости.

Рассмотрим установившееся течение идеальной жидкости.

Установившимся или стационарным называется течение, при котором скорости частиц в каждой точке потока со временем не изменяются (при этом условии линии тока совпадают с траекториями частиц жидкости).

Через любое сечение струи в единицу времени протекают одинаковые объёмы несжимаемой жидкости, равные произведению площади сечения на скорость:

S1V1=S2V2, или SV=const, (1)

где S - поперечное сечение струи, V - модуль скорости течения жидкости в любой точке выбранного сечения струи.

Уравнение выражает условие неразрывности струи, так как только при сплошном течении через любое сечение за одно и то же время проходит одинаковое количество жидкости.

Гемодинамика – раздел физиологии кровообращения, использующий законы гидродинамики для исследования причин, условий и механизмов движения крови в сердечно-сосудистой системе. Гемодинамика одновременно является и областью биофизики кровообращения, которая рассматривает все физические явления и процессы, происходящие в системе кровообращения.

1.2. Уравнение Бернулли.

Рассмотрим трубку тока малого сечения (рис. 1). Жидкость, выделенного объема, переместится из положениия1 в положение 2. Так как течение стационарное, то никаких энергетических изменений с жидкостью не произойдёт. Изменение энергии (потенциальной и кинетической) жидкости при перемещении объёма от положения 1 к 2 равно работе, которую необходимо совершить над жидкостью для перемещения выделенного объёма из положения 1 в положение 2. Считая объёмы цилиндрическими, можно записать:

V=S1l1=S2l2 (2)

Если скорость жидкости в пределах каждого заштрихованного объёма одинакова (равна v1 и v2 для положений 1 и 2 соответственно), то изменение кинетической энергии жидкости равно:

, (3)

так как m=S1l1=S2l2, где - плотность жидкости.

Вычислим работу внешних сил, действующих на жидкость. Силы со стороны соседних трубок тока нормальны к поверхности рассматриваемой трубки и работы не совершают. Работа сил, оказывающих давления р1 и р2 на торцы объёма 1 - 2 при его перемещении,

AР = F1 l1 - F2 l2 = p1S1 l1 - p2S2 l2. (4)

Рис. 1. Схема трубки тока жидкости для вывода формулы Бернулли.

Работа силы тяжести:

АТ = mgh1 - mgh2 = S1 l1gh1 - S2 l2gh2. (5)

Согласно закону сохранения энергии,

Ek= AР+ АТ,

(S2l2V22 - S1l1V12) = p1S1l1 - p2S2l2 + S1l1gh1 - S2l2gh2 (6)

откуда сокращая на S1l1 = S2l2 и перегруппировывая слагаемые, имеем:

Так как выбор сечения трубки произволен, то индексы можно опустить:

. (7)

- это уравнение Бернулли.

Слагаемые, входящие в уравнение Бернулли имеют размерность и смысл давления. Давление р называют статическим; оно не связано с движением жидкости и может быть измерено, например, манометром, перемещающимся вместе с жидкостью.

Давление называют динамическим; оно обусловлено движением жидкости и проявляется при ее торможении. Сумму статического и динамического давлений называют полным давлением:

рП = р + .

Давление gh - весовое. В состоянии невесомости весовое давление отсутствует, с увеличением перегрузок оно возрастает.

В различных точках линии тока идеальной жидкости сумма статического, динамического и весового давлений одинакова.

Рассмотрим некоторые частные случаи, вытекающие из уравнения Бернулли.