Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГЛАВА_6.doc
Скачиваний:
52
Добавлен:
12.02.2016
Размер:
618.5 Кб
Скачать

Глава 6. Электрометаллургия марганцевых ферросплавов

6.1. Свойства марганца и его соединений

Марганец – элемент VIIb группы Периодической системы элементов Д.И.Менделеева*. Порядковый номер марганца 25, атомная масса 54,93, конфигурация внешней электронной оболочки атома 3d54s2, степень окисления от 2 до 7, наиболее устойчивы Mn(II) и Mn(IV). Известны четыре кубические кристаллические модификации марганца: ниже 727оС устойчива а = 0,89124 нм, z = 58, плотность 7,44 г/см3, при 727–1090оС – Mn (а = 6300 нм, z = 20, плотность 7,29 г/см3), при 1090–1138oC – -Mn (а = 0,38550 нм при 1100оС, z = 4, плотность 6,37 г/см3), выше 1138оС – -Mn (а = 0,30750 нм при 1143оС, z = 2, плотность 6,28 г/см3). Температура плавления 1244оС. Марганец имеет аномально высокую упругость пара. Зависимость давления пара марганца от температуры в интервале 1245–1545оС описывается уравнением:

lgPMn(Па) = 10,8828 – 13625/Т (1043  Т  1158 K)

lgPMn(Па) = 20,005 – 14850/Т + 2,52lgT (1517 Т 2353 K).

Система MnFe (рис. 6.1). В системе Mn–Fe существует большая область твердого раствора на основе –Fe и –Mn. Растворы на основе -Mn и -Mn образуются при концентрации >68–70%Mn.

Низкая температура плавления сплавов в системе Mn–Fe составляет 1232оС при атомном содержании марганца 87%.

Интегральная энтальпия смешения достигает максимума –8360 Дж/моль при хMn = 0,7.

Система MnC (рис. 6.2). В системе идентифицированы следующие карбиды: Mn23C6 (5,38% C), Mn3C (6,77% C), Mn5C2 (8,03% C), Mn7C3 (8,57% C).

Кривая ликвидус на диаграмме состояния Мn–С в координатах концентрация углерода (ат. доли) – температура может быть выражена уравнением: lg[С] = –375,8/Т – 0347. Зависимость ∆G(T) для реакции растворении графита в жидком марганце Ст + Мnж = [C]Mn имеет вид:

_____________________

* Гасик М.И. Марганец, М.: Металлургия. 1992. – 608 с.

G = 17600 – 25,64Т, Дж/моль.

Рис. 6.1. Диаграмма равновесного состояния системы Fe–Mn

Рис. 6.2. Диаграмма равновесного состояния системы Mn–C

Зависимость изменения энергии Гиббса реакции образования высшего карбида марганца Мn7С3 из элементов 7Мn + 3С = Мn7С3 от температуры в интервале 1000-1150 K описывается уравнением:

G = 66155 – 58,24Т, Дж/моль.

Система MnSi (рис. 6.3). Диаграмма состояния системы построена с учетом существования 7 силицидов марганца и твердых растворов кремния в марганце.

Рис. 6.3. Диаграмма равновесного состояния системы Mn-Si

Теплоты образования силицидов марганца Мn3Si, Мn5Si3, МnSi, МnSi1,7 соответственно равны 17; 24,85; 30,5 и 28,15 кДж/моль. Плотность жидких сплавов системы Мn–Si с повышением концентрации кремния уменьшается. При 1500 K и содержании кремния 30% и 60% (ат.) плотность сплавов составляет 5,31 и 4,35 г/см3 (6,37 и 2,32 г/см3 для чистых марганца и кремния).

Активность марганца и кремния в расплавах Мn–Si зависит от состава сплава и температуры. Кривые аMn и аSi (рис. 6.4) пересекаются.

Рис. 6.4. Активность марганца и кремния в сплавах системы Mn–Si

при 1873 K (аMn и aSi – для гипотетического идеального, аиа– для модельного растворов)

Структурными единицами расплавов системы Mn–Si в аспекте модели ассоциированных растворов* приняты Mn, S и три ассоциата Mn3Si, Mn2Si и MnSi. С помощью оптимизационной процедуры Б.М. Могутновым и др. (Россия) рассчитаны значения энтальпии и изменение энтропии, сопровождающие процессы ассоциации в системе Mn–Si (рис. 6.5):

ассоциаты

–∆Но, Дж/моль

So, Дж/(мольK)

Mn3Si

3553

–18,48

Mn2Si

101066

–15,15

MnSi

93567

–22,53

Как следует из данных рис. 6.5, наибольшую долю в расплавах Mn–Si при 1873 K представляют ассоциаты MnSi.

Система MnSiC (рис. 6.6). Растворимость и активность углерода в расплавах системы Mn–Si–C снижается по мере повышения содержания кремния, что объясняется более высокой термодинамической прочностью химических связей атомов марганца с кремнием, чем с углеродом**.

____________________

* Щелкова Н.Е., Зайцев А.И., Могутнов Б.М. //Расплавы. – 1999, – №3. – С.35-43

** Tang K., Olsen S/E/ Manganese and silicon activities in liquid carbon-saturated Mn–Si–C allos //Steel Res. 2002/ 73. №3. – C.77-82 (РЖ Металлургия. 03.01-15Г148)

Это положение является общим для расплавов систем Fe–Si–C, Mn–Si–C и Cr–Si–C, а также для расплавов систем (Mn, Fe)–Si–C, (Cr, Fe)–Si–C и (Cr, Mn)–Si–C. На рис. 6.7 представлены криволинейные зависимости равновесных содержаний углерода в расплавах системы Mn–Si–C (кривая 1), системы (Mn, Fe)–Si–С (кривые 2, 3 и 4) и системы Fe–Si–C (кривая 5) при 1600оС.

Рис.6.5. Силикокарбидные фазы в системе Mn–Si–C

Рис. 6.6. Диаграмма равновесного состояния системы Mn–Si–C

Рис. 6.7. Равновесные содержания углерода в зависимости от концентрации кремния в системах: 1 – Mn-Si-Cнас; 2 – Mn–Fe–Si–Cнас при %Mn/%Fe = 4; 3 – Mn–Fe–Si–Cнас при %Mn/%Fe = 2;

4 – Mn–Fe–Si–Cнас при %Mn/%Fe = 1; 5 – Fe–Si–Cнас

Наиболее высокая растворимость углерода имеет место в системе Mn–Si–C, наиболее низкая в системе Fe–Si–C. По мере уменьшения отношения %Mn/%Fe равновесная растворимость углерода уменьшается. Существенное различие в растворимости углерода в рассматриваемых системах при содержании кремния до ~10–15%, постепенно уменьшается, и свыше 23-25% кривые сливаются. Важно отметить, что при увеличении содержания кремния до 23–25% равновесной фазой является графит. В концентрационной области содержания кремния более 23–25% расплавы находятся в равновесии с карбидом кремния. Для системы Mn–Si–C предельным значением содержания кремния, при котором углерод может сосуществовать с карбидом кремния, является 23,48% Si, что соответствует составу фазы Новотного (Mn5Si3Cx).

В торговых марках ферросиликомарганца в зависимости от марки сплава может содержаться до 15-20% Fe при 65% Mn. На рис. 6.8 представлен марганцевый угол тройной диаграммы [Mn, Fe]–Si–C при отношении %Mn/%Fe = = 4. Обращает внимание наличие областей существования железомарганцевых силикокарбидов [Mn, Fe]17Si4C3, [Mn,Fe]3SiC в равновесии с графитом и силикокарбида марганца Mn5Si3Cx в равновесии с SiC. Положение изотерм растворимости углерода в расплавах системы [Mn, Fe]–Si–C при %Mn/%Fe = 4 свидетельствует, что с понижением температуры равновесное содержание углерода снижается и процесс сопровождается выделением графита или карбида кремния.

Граница равновесии карбосилицидных фаз и расплавов Mn–Fe–Si–C с графитом и SiC на рис. 6.8 представлена ломанной линией.

Рис.6.8. Фазовые равновесия в марганцевом углу диаграммы Ме(Mn:Fe=4:1) –Si–C с указанием областей состава сплавов в равновесии с SiC и графитом (INFACON-96); изотермы в оС

Система MnP (рис. 6.9). Фосфор не образует твердых растворов в марганце, но известен ряд фосфидов марганца Mn3P, Mn2P, Mn3P2 MnP (табл. 6.1).

Таблица 6.1. Энтальпия и энтропия фосфидов марганца

Фосфид

–∆Н, кДж/моль

S, Дж/(моль∙K)

Mn3P

161

89,0

Mn2P

150

76,0

MnP

96

49,2

В расплавах системы Мn–Р имеет место сильное межчастичное взаимодействие марганца с фосфором, характеризующееся значительным отрицательным отклонением от закона Рауля.

Рис. 6.9. Диаграмма равновесного состояния системы Mn–P:

а – по экспериментальным данным; б – по результатам термодинамического расчета

Система МnS (рис. 6.10). Марганец с серой образует термодинамически прочные сульфиды марганца MnS и MnS2. Сульфид МnS плавится при 1610оС. Изменение термодинамического потенциала реакции образования сульфида Мnт + Sт = МnSт в интервале 973–1573 K описывается выражением ∆G = –296520 + 76,73Т, Дж/моль.

Рис. 6.10. Диаграмма равновесного состояния системы Mn–S

Система MnO (рис. 6.11). Уравнение для расчета растворимости кислорода в жидком марганце при аMnO = 1 имеет вид: lg[O]Mn = –4823+ 1,159. Эвтектике при 1245оС соответствует содержание кислорода 0,0095%.

Рис. 6.11. Диаграмма равновесного состояния системы Mn–O

Для электрометаллургии марганца большой интерес представляет знание свойств оксидов марганца MnO2, Mn2О3, Mn3O4 и MnO (табл. 6.2).

Таблица 6.2. Физико-химические свойства оксидов марганца

Показатели

MnO

Mn3O4

Mn2O3

MnO2

Относительная молекулярная масса

70,93

228,81

157,87

86,93

Содержание кислорода, %: атомное

массовое

50

57,12

60

66,67

22,55

27,97

30,40

36,80

Плотность, г/см3

5,18

4,70

4,94

5,026

Теплота образования –∆Н, кДж/моль

385,186

1387,5

971,75

521,257

Стандартная энтропия S, Дж/(моль∙К)

61,5

148,63

110,53

53,172

Изменение энергии Гиббса –∆G, кДж/моль

363,41

1281,16

882,0

466,409

Температура плавления, оС

1845

1590

1350

850

Термическая диссоциация оксидов марганца. Масс-спектроскопическим методом определены давления кислорода и состав паровой фазы над МnO2, Mn2O3, Mn3O4 и MnO (табл. 6.3).

Таблица 6.3. Термодинамические данные реакций термической диссоциации кислородных соединений марганца по результатам масс-спектроскопических исследований

Реакция

lgp = A/T+B (Па)

Т, K

4MnO2(т) = 2Mn2O3(т)+O2(газ)

lgp=–9860/T+15,98

560–640

6Mn2O3(т) = 4Mn3O4(т)+O2(газ)

lgp=–11740/T+13,92

810–910

2Mn3O4(т) = 6MnO + O2(газ)

lgp=–23910/T+17,73

1270–1350

2MnOт = 2Mnгаз + O2(газ)

lgp=–24730/T+14,00

1602–1747

Термическая диссоциация низших оксидов марганца Мn3O4 и МnO происходит по реакциям 3 и 4 (см. табл. 6.3), причем давление диссоциации зависит только от температуры, так как Мn3O4 практически не имеет области гомогенности (рис.6.11).

При испарении МnО паро-газовая фаза состоит из ионов Мn+, МnО+, O+; интенсивность ионов МnO+ и О+ незначи-тельна.

Система MnOCO2. В этой системе образуется карбонат марганца MnCO3 (родохрозит). При нагревании МnСО3 в интервале 620–690оС карбонат диссоциирует по реакции: МnCО3 = МnО + CO2. Механизм диссоциации MnСО3 сложен.

Система MnOSiO2 (рис. 6.12). Закись марганца MnO с кремнеземом образует два соединения: тефроит (Мn2SiО4, 70,92% МnО) и родонит (МnSiO3, 54,19% МnО). Тефроит устойчив до температуры плавления 1345оС, родонит перитектически разлагается при 1291оС. В системе имеются две эвтектики, которым соответствуют температуры 1315оС и 1251оС.

Рис. 6.12. Диаграмма равновесного состояния MnO–SiO2

Тефроит (ортосиликат) и родонит (метасиликат) образуются из оксидов по реакциям: 2MnО + SiО2 = МnSiО3, ∆Н = –59440 Дж/моль и МnО + SiО2 = МnSiО3Н = –29220 Дж/моль.

Активности MnO и SiO2 в двухфазных температурно-концентрационных областях MnО + Ж и SiO2 + Ж диаграммы состояния MnO–SiO2 (рис. 6.12) равны единице. В однофазной области существование расплава (Ж) активности MnO и SiO2 изменяются; с увеличением доли MnO ее активность увеличивается, а активность SiO2 уменьшается (рис. 6.13). при выборе в качестве стандартного состояния чистых твердых оксидов MnO и SiO2 зависимость логарифма коэффициента активности MnO и SiO2 от их мольных долей имеет вид:

lgfMnO = –3,123(1 – xMnO)2 + 0,348;

lgf = –3,123(1 – x)2 + 1,188.

Рис. 6.13. Активность оксида марганца а и кремнезема а в системе MnO–SiO2 при 1600оС

Результаты расчетов коэффициентов активности и активности MnO и SiO2 по данным Б.П. Бурылева и Л.П. Мойсова* приведены ниже:

x

0,526

0,550

0,600

0,650

0,700

0,737

x

0,474

0,450

0,400

0,350

0,300

0,263

f

0,443

0,520

0,705

0,923

1,256

1,355

f

2,108

1,751

1,158

0,739

0,455

0,310

a

0,233

0,286

0,423

0,600

0,879

1,000

a

1,000

0,788

0,463

0,258

0,136

0,082

________________________

* Бурылев Б.П., Мойсов Л.П. //Известия вузов. Черная металлургия. 2001, №8, С.3-5

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]