Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

elem_mat / lishnee iz lekcii 11

.doc
Скачиваний:
24
Добавлен:
11.02.2016
Размер:
478.21 Кб
Скачать

Відзначимо попутно, що дроби виду

часто зустрічаються в задачах на складання рівнянь. У чисельнику і знаменнику такого дробу стоять лінійні однорідні вирази, що залежать від х та у. Якщо не розглядати випадок у = 0, то функція F (ху) залежить фактично лише від однієї змінної, а саме, від відношення

При цьому рівняння F (х, у) = C дозволяє знайти це відношення.

Задача. Три однакові пробірки наповнені до половини розчинами спирту. Після того як уміст третьої пробірки розлили нарівно в перші двох, об’ємна концентрація спирту в першій зменшилася на 20 % від первісної, а в другий збільшилася на 10 % від первісного значення. В скількох разів первісний об’єм спирту в першій пробірці перевищував первісний об’єм спирту в другій пробірці?

Рис. 3

Розв’язок. Введемо в розгляд об’єм половини пробірки V0 і концентрації розчинів спирту в кожній із пробірок c1 і с2. Тоді первісний об’єм спирту в першій пробірці дорівнює V0c1, у другій V0c2, у третій V0c3 (рис. 3). Для того щоб розв’язати задачу, підрахуємо об’єми спирту в першій і другій пробірках після того, як туди додадуть вміст третьої пробірки. Ці об’єми будуть рівні: у першій пробірці

у другій пробірці

Знайдемо нові концентрації спирту в цих пробірках. Для першої пробірки вона дорівнює

для другої

За умовою задачі і Тоді маємо систему двох рівнянь з трьома невідомими:

або

З цієї системи, так само як і в попередній задачі, не можна визначити всі три концентрації c1, c2 і с3. Але завдяки тому, що рівняння системи являють собою однорідні лінійні вирази, з неї можна знайти співвідношення двох концентрацій до третьої, наприклад с1/с3 і с2/с3:

Об’єм спирту в першій пробірці відноситься до об’єму спирту в другій пробірці як т/п. Дійсно,

Відповідь. У 3,25 рази.

Звернемося тепер до задач, які можна об’єднати в одну групу через те, що їхній розв’язок пов’язаний з виявленням загальної закономірності зміни тієї чи іншої величини в результаті багаторазово повторюваної операції.

Розглянемо наступний приклад.

У сосуді, об’єм якого дорівнює V0 л, міститься р %-й розчин солі (рис. 4). Із сосуду виливається а л суміші і доливається а л води, після чого розчин перемішується. Ця процедура повторюється п разів. Запитується, за яким законом змінюється концентрація солі в сосуді, тобто яка буде концентрація солі після п процедур?

Рис. 4

Розв’язок. Очевидно, що первісний об’єм солі у розчині дорівнює

Після того як відлили а л суміші, у розчині залишилося

літрів солі, а її концентрація після додавання а л води дорівнює

Після того як відлили ще а л суміші (але вже з концентрацією c1), у розчині залишилося солі

а її концентрація після додавання а л води дорівнює

Немає потреби ще раз проробляти ту ж процедуру, щоб переконатися, що концентрація солі в розчині після п переливань визначається формулою

(2)

що являє собою геометричну прогресію, що убуває. Множник

що є знаменником цієї прогресії, показує, у скільки разів убуває концентрація після чергового переливання.

Приклад 3. У кожному із двох сосудів знаходиться по V0 л кислоти однакової концентрації. З першого сосуду відлили а л розчину і долили а л води. Потім цю процедуру повторили ще раз. З другого сосуду відлили 2а л розчину і долили 2а л води. Потім цю процедуру повторили ще раз. Відомо, що концентрація кислоти в першому сосуді виявилася в 25/16 рази більшою, ніж концентрація кислоти в другому сосуді. Яку частину від об’єму сосуду складають а л?

Розв’язок. Використовуючи отримані вище результати, маємо

або

З цього рівняння знаходимо співвідношення a/V0. Знаходячи з обох частин рівняння арифметичний корінь, одержуємо

Оскільки a/V0 < 1 і 2а/V0 < 1, то

Звідси знаходимо шукане відношення:

Відповідь. 1/6 частина.

Наведемо узагальнення формули (2) на випадок, коли щоразу у сосуд доливається не вода, а розчин тієї ж солі з постійною концентрацією , тобто йдеться про наступну задачу: у сосуді об’ємом V0 л міститься р%-й розчин солі. Із сосуду виливається а л суміші і доливається стільки ж літрів q%-го розчину солі, після чого розчин перемішується. Запитується, за яким законом змінюється концентрація солі в сосуді, тобто яка буде концентрація після п процедур?

Остаточний розв’язок має вигляд

Для доведення цієї формули позначимо концентрацію розчину солі, що міститься в сосуді після п переливань, через . Тоді після чергової -й процедури, що полягає в тому, що виливають а л розчину з концентрацією і доливають а л q %-го розчину, концентрація солі стає рівної

або

Спробуємо визначити концентрацію сп з отриманого співвідношення. При цьому будемо враховувати, що початкове значення концентрації відомо:

при

Запишемо наступні дві рівності:

Віднімаючи ці вирази почленно один від одного, одержимо

Якщо позначити різницю концентрацій через останню рівність можна переписати в більш простому вигляді:

або

Звідси видно, що послідовність чисел утворює геометричну прогресію зі знаменником

Перший член цієї прогресії легко визначається:

Після цього знаходимо

або

Запишемо останню рівність для значень п, рівних 1, 2, ... n, і додамо співвідношення, що виходять, між собою:

або

При додаванні правих частин розглянутих рівностей використовувалася формула для суми членів геометричної прогресії.

Підставляючи замість її значення отримаємо формулу (3). Відмітимо, що при ця формула переходить у раніше отриману формулу (2).

Формула (2) тісно пов’язана з відомим у теорії відсотків правилом нарахування «складних відсотків».

2. Маємо два розчини однієї і тієї ж солі у воді. Для одержання суміші, що містить 10 г солі і 90 г води, беруть першого розчину вдвічі більше по масі, чим другого. Через тиждень з кожного кілограма першого і другого розчину випарувалося по 200 г води, і для одержання такої ж суміші, як і раніше, потрібно першого розчину уже вчетверо більше по масі, чим другого. Скільки грамів солі містилося спочатку в 100 г кожного розчину?

Відповідь. 5 г і 20 г.

3. Маємо три суміші, складені з трьох елементів А, В і С. У першу суміш входять лише елементи А і В у ваговому відношенні 3:5, у другу суміш входять лише елементи В і С у ваговому відношенні 1:2, у третю суміш входять лише елементи А і С у ваговому відношенні 2:3. У якому відношенні потрібно взяти ці суміші, щоб у знову отриманій суміші елементи А, В і С містилися у ваговому відношенні 3:5:2?

Відповідь. 20:6:3.

Задача. Маються два різних сплави міді зі свинцем. Якщо взяти 1 кг першого сплаву і 1 кг другого сплаву і переплавити їх, то вийде сплав, що містить 65 % міді. Відомо, що якщо взяти два шматки — шматок I і шматок II першого і другого сплавів відповідно, що мають сумарну масу 1 кг, і переплавити їх, то вийде сплав із вмістом 60% міді. Яка маса міді, що міститься в сплаві, що виходить при спільному переплавлянні шматка першого сплаву, рівного по масі шматку II, і шматка другого сплаву, рівного по масі шматку I?

Розв’язок. Уведемо процентні вмісти міді в сплавах: р% — в першому (концентрація міді р/100) і q% — в другому (концентрація міді q/100), а також масу шматка І — х кг і масу шматка ІІ — у кг. Складемо рівняння задачі.

Умова задачі

Рівняння

1 кг першого сплаву, переплавлений з 1 кг другого сплаву, дає сплав, що містить 65% міді

Сумарна маса шматка I і шматка II дорівнює 7 кг

Якщо переплавити шматок I і шматок II, то вийде сплав, що містить 60% міді

Таким чином, виходить система трьох рівнянь з чотирма невідомими:

Звичайно, усієї чотири невідомих з такої системи однозначно знайти не можна. Тому звернемося до питання, на яке потрібно відповісти. Потрібно визначити, яка маса міді, що міститься в сплаві, що виходить при спільному переплавлянні шматка першого сплаву, рівного по масі шматку II, і шматка другого сплаву, рівного по масі шматку I, тобто величину

Система рівнянь цієї задачі має таку структуру, що величину qx + py можна легко знайти. Дійсно, перемножуючи почленно перше і друге рівняння і віднімаючи з добутку третє рівняння, одержуємо

Після цього знаходимо величину Q:

Q = 4,9 кг.

Відповідь. 4,9 кг.

5. Продають три шматки тканини. З першого продали половину, із другого 2/3, а третій шматок, у якому було 1/3 усієї тканини, продали весь. Скільки відсотків тканини продано, якщо всього залишилось її вдвічі менше, ніж було в другому шматку?

Відповідь. 75 %.

6. У лабораторії є розчини солі чотирьох різних концентрацій. Якщо змішати перший, другий і третій розчини у ваговому відношенні 3:2:1, то вийде 15%-й розчин. Другий, третій і четвертий розчини, узяті в рівній пропорції, дають при змішанні 24%-й розчин, і, нарешті, розчин, складений з рівних вагових частин першого і третього розчинів, має концентрацію 10%. Яка концентрація вийде при змішанні другого і четвертого розчинів у пропорції 2:1?

Відповідь. 0,29.

Задача. У 7 год. ранку з пункту А в пункт В за течією ріки відправляються байдарка і катер. Байдарка припливає в пункт В о 17 год того ж дня. Катер же, дійшовши до пункту В, миттєво повертає назад і на своєму шляху з В до А зустрічає байдарку не пізніше 15 год, а прибуває в пункт А не раніше 23 год. того ж дня. Знайти час прибуття катера в пункт В, якщо відомо, що власна швидкість катера в два рази більша власної швидкості байдарки.

Розв’язок. Своєрідність цієї задачі, як і попередньої, полягає в тому, що складених рівнянь недостатньо для однозначного визначення всіх невідомих. Це допомагають зробити наявні в задачі умови, що виражаються у вигляді нерівностей.

Нехай і — швидкості катера, байдарки (у стоячій воді) і ріки відповідно, — відстань між пунктами А і В. Тоді маємо наступну таблицю:

Умови задачі

Рівняння або нерівність

Байдарка знаходилася в дорозі 10 год

(1)

На зворотному шляху з В в Л катер зустрів байдарку не пізніше 15 ч того ж дня

(2)

Катер прибув назад у пункт А не раніше 23 ч того ж дня

Катер може рухатися проти течії

Пояснимо, як була складена нерівність (2) системи. Нехай — час (у годинах), що пройшов з початку руху до зустрічі катера і байдарки. Тоді

Тут — час руху катера вниз по річці з А до В. Знайшовши час t з отриманого рівняння, ми приходимо до лівої частини нерівності (2).

Знайдемо розв’язок системи нерівностей (1)—(4). Розділивши чисельник і знаменник кожного з дробів у лівій частині (2) і (3) на vб + u і з огляду на рівність (1), одержуємо

(2)

і

(3)

Отримані нерівності можна подати у такій формі:

або

і

Звідси видно, що ця система нерівностей несуперечлива, якщо тобто . Тоді з рівняння (1) одержуємо

тобто

У задачі потрібно знайти час прибуття катера до пункт В. Знаходимо

Відповідь. Катер припливає в пункт В о 13 годині.

Один із прикладів задач такого типу нам уже зустрічався наприкінці попереднього параграфа. Розглянемо ще кілька прикладів.

Задача. З міста А в місті В відправився мандрівник, що у перший день пройшов 1/m-ю частину всього шляху. У наступний день він пройшов 1/m частину шляху, що залишився. У наступні дні він проходить поперемінно то 1/m частину, то 1/m частину шляху, що залишався до кінця попереднього дня. Через 10 днів такого руху з’ясувалося, що він пройшов 31/32 усієї відстані між містами А і В. Знайти m і n, якщо відомо, що m > n; m, n — цілі числа.

Розв’язок. До кінця першого дня відстань що відділяє мандрівника від міста В, дорівнює

,

де s — відстань між містами.

До кінця другого дня відстань s2, що відокремлює його від міста В, стає рівною

Повторюючи ці міркування (див. формулу складних відсотків у § 1), одержуємо, що до кінця 10-го дня шляху до міста В залишилося пройти відстань що дорівнює

Тому єдине рівняння в цій задачі має вигляд

(1)

Вилучаючи корінь п’ятого ступеня з обох його частин, одержуємо

або

(2)

Таким чином, потрібно знайти єдиний розв’язок одного рівняння з двома невідомими. Виявляється, що це можна зробити, але тільки враховуючи, що т і п — цілі позитивні числа

Виражаючи, наприклад, т з останнього рівняння, одержуємо

і оскільки не задовольняє цьому рівнянню, знаходимо

Беручи до уваги, що т — ціле число, заключаємо, що і дріб також повинна бути цілим числом. З огляду на, що і неважко побачити, що розглянуте відношення набуває цілих значень тільки при і Якщо , то Якщо то Враховуючи умову задачі: одержуємо єдиний розв’язок:

Отже, розв’язок знайдено.

Розглянемо ще один приклад.

1. Хтось придбав 30 птахів за 30 монет. З числа цих птахів за кожних трьох горобців заплачена 1 монета, за кожних двох горлиць — також 1 монета, за кожного голуба — 2 монети. Скільки було куплено птахів кожної породи?

Відповідь. 9 горобців, 10 горлиць, 11 голубів.

10. У школяра була деяка сума грошей монетами достоїнством у 15 коп. і 20 коп., причому 20-копійчаних монет було більше, ніж 15-копійчаних. П’яту частину всіх грошей школяр витратив, віддавши дві монети на квиток у кіно. Половину грошей, що залишилися в нього, він віддав за обід, оплативши його трьома монетами. Скільки монет кожного достоїнства було в школяра спочатку?

Відповідь. 2 п’ятнадцятикопійчані монети і 6 двадцятикопійчані монети.

Задача. Автомобіль виїжджає з пункту А і їде з постійною швидкістю км/год. до пункту В, що відстоїть від пункту А на відстані 24,5 км. У пункті В автомобіль переходить на рівноуповільнений рух, причому за кожну годину його швидкість зменшується на 54 км/год., і рухається так до повної зупинки. Потім автомобіль відразу ж повертає назад і повертається в А з постійною швидкістю . Якою повинна бути швидкість , щоб автомобіль за найменший час проїхав шлях від А до повної зупинки і назад до пункту А зазначеним вище способом?

Розв’язок. Підрахуємо час, що затрачає автомобіль на весь шлях від А до повної зупинки і назад. Покажемо, що цей час визначається одним невідомим параметром .

1. Відстань 24,5 км автомобіль проїжджає за час

2. Слідом за цим він рухався до повної зупинки з прискоренням — 54 км/год2 протягом часу

пройшовши при цьому відстань s, що визначається за відомою формулою для рівноприскореного руху:

3. Час, витрачений на зворотній шлях, дорівнює

Тому повний час руху автомобіля

Таким чином, час руху автомобіля від пункту А до повної зупинки і назад є функцією однієї перемінної — його швидкості на першій ділянці:

Визначимо тепер, при якому значенні ця функція досягає свого мінімуму. Для цього обчислимо її похідну

Необхідною умовою екстремуму диференційованої функції є рівність нулю її похідної

Звідси знаходимо, що При цьому значенні змінної функція має мінімум, оскільки при і при Таким чином, при швидкості 42 км/год. автомобіль, рухаючись зазначеним вище способом, витратить на весь шлях мінімально можливий час.

Соседние файлы в папке elem_mat