
- •Тема 1. Основні поняття теорії ймовірностей 8
- •Модульний план
- •Розподіл балів за виконані роботи
- •Критерії оцінювання знань, вмінь та навичок студентів Лекційні заняття
- •Практичні заняття
- •Оцінювання самостійної та індивідуальної роботи
- •Модуль і. Теорія ймовірностей Змістовний модуль 1. Теоретичні основи теорії ймовірностей та комбінаторики
- •Тема 1. Основні поняття теорії ймовірностей
- •1.1. Поняття "випробування" та "подія". Предмет теорії ймовірностей. Коротка історична довідка.
- •Властивості операцій над подіями
- •Запитання для самоконтролю
- •Тема 2. Основні поняття та принципи комбінаторики
- •Сполуки без повторень елементів
- •Сполуки з повторенням елементів
- •Основні принципи комбінаторики
- •Запитання для самоконтролю
- •Тема 3. Ймовірність подій. Основні теореми теорії ймовірностей
- •Властивості ймовірності
- •3.2. Відносна частота. Статистичне означення ймовірності.
- •3.3. Геометричне означення ймовірності
- •Залежні та незалежні події. Умовна ймовірність. Теореми множення ймовірностей.
- •Теорема множення ймовірностей залежних подій
- •3.5. Теореми додавання ймовірностей Теорема додавання ймовірностей несумісних подій
- •3.6. Ймовірність настання хоча б однієї події
- •Теорема
- •Запитання для самоконтролю
- •Тема 4. Формула повної ймовірності. Формула Бейєса.
- •4.1. Формула повної ймовірності
- •4.2. Формула Бейєса
- •Запитання для самоконтролю
- •Тема 5. Послідовні незалежні випробування
- •5.1.Схема повторних незалежних випробувань Бернуллі.
- •5.2. Граничні теореми у схемі Бернуллі
- •5.3. Ймовірність відхилення відносної частоти від сталої ймовірності в незалежних випробуваннях
- •Запитання для самоконтролю
- •Практичні заняття Практичне заняття №1
- •Практичне заняття №2
- •Практичне заняття №3
- •Практичне заняття №4
- •Практичне заняття №5
- •Самостійна робота
- •Рівень а
- •Рівень б
- •Рівень в
- •Рівень а
- •Рівень б
- •Рівень в
- •Теми рефератів
- •Задачі для самоперевірки
- •Змістовний модуль 2. Випадкові величини
- •Тема 6. Види випадкових величин та способи їх задання
- •6.1. Поняття випадкової величини. Закони розподілу випадкових величин.
- •6.1.1. Дискретні випадкові величини
- •Числові характеристики двв
- •6.1.2. Неперервні випадкові величини. Щільність розподілу.
- •Основні закони розподілу неперервних величин
- •Числові характеристики ннв
- •Правило трьох сигм
- •6.2. Закон великих чисел та центральна гранична теорема
- •Теорема
- •Запитання для самоконтролю
- •Практичны заняття Практичне заняття №6
- •Практичне заняття №9
- •Самостійна робота
- •Числові характеристики основних розподілів
- •Рівень а
- •Рівень б
- •Рівень в
- •Задача 1
- •Задача 2
- •10. Неперервна випадкова величина задана інтегральною функцією розподілу:
- •Задачі для самоконтролю
- •Модуль іі. Математична статистика Змістовний модуль 3. Теоретичні основи математичної статистики
- •Тема 7. Предмет та задачі математичної статистики
- •Види та способи відбору
- •Первинна обробка даних
- •Згрупований розподіл накопиченої частоти
- •Розподіл щільності частоти і щільності відносної частоти
- •Емпірична функція розподілу
- •Властивості емпіричної функції розподілу
- •Запитання для самоконтролю
- •Тема 8. Статистичні оцінки параметрів розподілу
- •8.1. Числові характеристики статистичного розподілу
- •Алгоритм методу добутків
- •8.2. Точкові та інтервальні оцінки параметрів розподілу
- •Точкова оцінка математичного сподівання
- •Точкова оцінка дисперсії. Виправлена дисперсія
- •Інтервальні оцінки для математичного сподівання
- •Знаходження об’єму вибірки
- •Запитання для самоконтролю
- •Практичні заняття Практичне заняття №10
- •Практичне заняття №11
- •Практичне заняття №12-13
- •Практичне заняття №14
- •Самостійна робота
- •Змістовний модуль 4. Статистична перевірка гіпотез. Елементи теорії кореляції і дисперсійного аналізу
- •Тема 9. Статистична перевірка гіпотез
- •Статистичні гіпотези та їх класифікація
- •9.2. Статистичні критерії перевірки нульової гіпотези
- •9.3. Перевірка гіпотези про закон розподілу. Критерій згоди Пірсона.
- •Запитання для самоконтролю
- •Тема 10. Елементи теорії кореляції
- •Запитання для самоконтролю
- •Тема 11. Поняття дисперсійного аналізу. Однофакторний дисперсійний аналіз
- •Запитання для самоконтролю
- •Практичні заняття
- •Практичне заняття №17
- •Практичне заняття №18
- •Самостійна робота
- •Методичні рекомендації
- •Список використаної та рекомендованої літератури
- •Додатки
- •Математична довідка
- •Властивості функції
- •V. Правила інтегрування функцій
Точкова оцінка математичного сподівання
Нехай х1, х2, х3, ..., хn – вибірка отримана в результаті п незалежних випробувань над випадковою величиною Х – деякою ознакою генеральної сукупності, яка має математичне сподівання М(Х)=а.
За
точкову оцінку математичного сподівання
а
=М(Х) беруть вибіркове середнє
.
Легко
довести, що
є незміщеною для М(Х)=а,
тобто
М(
)=а.
Якщо
додатково припустити, що випадкова
величина Х має скінчену дисперсію
,
тоді можна стверджувати, що оцінка
є змістовною. Якщо обчислити дисперсію
вибіркової середньої
,
то отримаємо
.
Оскільки
,
то це означає, що оцінка
є змістовною для параметраа.
Твердження.
Якщо випадкова величина Х нормально
розподілена з параметрами М(Х)=а і
,
то оцінка
має у класі всіх незміщених оцінок
математичного сподівання а мінімальну
дисперсію, яка дорівнює
.
Тому
є ефективною оцінкою параметра а.
Точкова оцінка дисперсії. Виправлена дисперсія
За
точкову оцінку дисперсії беруть
вибіркову дисперсію
,
яка є зміщеною оцінкою параметра
.
Цей факт випливає з рівності
,
яку неважко встановити за допомогою
безпосередніх обчислень. Тому вибіркову
дисперсію доцільно виправити таким
чином, щоб вона стала незміщеною оцінкою.
Для цього достатньо
помножити
на дріб
.
Виправлену
вибіркову дисперсію
позначають
.
Тоді
виправленим
середньоквадратичним відхиленням
вибірки буде
Дріб
називають поправкою Бесселя. Для малихп
поправка Бесселя значно відрізняється
від одиниці. Для п50
практично немає різниці між
і
.
Можна
показати, що оцінки
і
є змістовними і не є ефективними.
У
випадку, коли математичне сподівання
а відоме і випадкова величина Х нормально
розподілена, то незміщеною, змістовною
та ефективною оцінкою дисперсії
є оцінка
Точкові оцінки параметрів розподілу є випадковими величинами, їх можна вважати первинними результатами обробки вибірки тому, що невідомо, з якою точністю кожна з них оцінює відповідну числову характеристику генеральної сукупності.
Однак, при малому об’ємі вибірки точкові оцінки можуть мати значні розходження із значенням параметра, що оцінюється. Це призводить до грубих помилок.
Більш точними є інтервальні оцінки.
Означення. Інтервальною називають оцінку, яка визначається двома числами – кінцями інтервалу.
Інтервальні оцінки дозволяють встановити точність та надійність оцінок.
Нехай
за даними вибірки знайдена статистична
оцінка
невідомого параметра
,
який бдемо вважати сталим числом.
Очевидно, що
тим точніше визначає параметр
,
чим менша за абсолютною величиною
різниця
.
Означення.
Число δ,
для якого виконується нерівність
<δ,
називають точністю
оцінки.
Означення.
Надійністю
оцінки
по
називають
ймовірністьγ,
з якою виконується нерівність
<
δ або
γ=Р(<δ) (20)
Найчастіше число γ задається наперед і, залежно від обставин дорівнює 0,95 або 0,99, або 0,999.
Замінимо
нерівність
на рівносильну
.
Звідси формулу (20) можна переписати у такому вигляді
.
Означення.
Інтервалом
довір’я
або довірчим
інтервалом
називають інтервал
,
який із заданою надійністю
покриває невідомий параметр
.
Зауваження. Кінці довірчого інтервалу є випадковими величинами.