Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
discrete-corcordance.rtf
Скачиваний:
2
Добавлен:
10.02.2016
Размер:
676.21 Кб
Скачать

103 Structure (mathematical logic)

105 In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations which are defined on it.

107 Model theory has a different scope that encompasses more arbitrary theories, including foundational structures such as models of set theory. From the model-theoretic point of view, structures are the objects used to define the semantics of first-order logic. In model theory a structure is often called just a model, although it is sometimes disambiguated as a semantic model when one discusses the notion in the more general setting of mathematical models. Logicians sometimes refer to structures as interpretations.

138 Formally, a structure can be defined as a triple consisting of a domain A, a signature ?, and an interpretation function I that indicates how the signature is to be interpreted on the domain. To indicate that a structure has a particular signature ? one can refer to it as a ?-structure.

140 The domain of a structure is an arbitrary set; it is also called the underlying set of the structure, its carrier (especially in universal algebra), or its universe (especially in model theory). Very often the definition of a structure prohibits the empty domain.

141 Sometimes the notation or is used for the domain of , but often no notational distinction is made between a structure and its domain. (I.e. the same symbol refers both to the structure and its domain.)

144 The signature of a structure consists of a set of function symbols and relation symbols along with a function that ascribes to each symbol s a natural number which is called the arity of s because it is the arity of the interpretation of s.

145 Since the signatures that arise in algebra often contain only function symbols, a signature with no relation symbols is called an algebraic signature. A structure with such a signature is also called an algebra; this should not be confused with the notion of an algebra over a field.

148 When a structure (and hence an interpretation function) is given by context, no notational distinction is made between a symbol s and its interpretation I(s). For example if f is a binary function symbol of , one simply writes rather than .

150 The standard signature ?f for fields consists of two binary function symbols + and ?, a unary function symbol ?, and the two constant symbols 0 and 1. Thus a structure (algebra) for this signature consists of a set of elements A together with two binary functions, a unary function, and two distinguished elements; but there is no requirement that it satisfy any of the field axioms. The rational numbers Q, the real numbers R and the complex numbers C, like any other field, can be regarded as ?-structures in an obvious way:

160 The ordinary signature for set theory includes a single binary relation ?. A structure for this signature consists of a set of elements and an interpretation of the ? relation as a binary relation on these elements.

167 A subset of the domain of a structure is called closed if it is closed under the functions of , i.e. if the following condition is satisfied: for every natural number n, every n-ary function symbol f (in the signature of ) and all elements , the result of applying f to the n-tuple is again an element of B: .

170 The closed subsets (or induced substructures) of a structure form a lattice. The meet of two subsets is their intersection. The join of two subsets is the closed subset generated by their union. Universal algebra studies the lattice of substructures of a structure in detail.

algebra

20 2.9 Algebra

70 Algebra

71 Main article: Abstract algebra

72 Algebraic structures occur as both discrete examples and continuous examples. Discrete algebras include: boolean algebra used in logic gates and programming; relational algebra used in databases; discrete and finite versions of groups, rings and fields are important in algebraic coding theory; discrete semigroups and monoids appear in the theory of formal languages.

105 In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations which are defined on it.

106 Universal algebra studies structures that generalize the algebraic structures such as groups, rings, fields, vector spaces and lattices. The term universal algebra is used for structures with no relation symbols.

137 See also: Model theory#Universal algebra and Universal algebra#Basic idea

140 The domain of a structure is an arbitrary set; it is also called the underlying set of the structure, its carrier (especially in universal algebra), or its universe (especially in model theory). Very often the definition of a structure prohibits the empty domain.

145 Since the signatures that arise in algebra often contain only function symbols, a signature with no relation symbols is called an algebraic signature. A structure with such a signature is also called an algebra; this should not be confused with the notion of an algebra over a field.

150 The standard signature ?f for fields consists of two binary function symbols + and ?, a unary function symbol ?, and the two constant symbols 0 and 1. Thus a structure (algebra) for this signature consists of a set of elements A together with two binary functions, a unary function, and two distinguished elements; but there is no requirement that it satisfy any of the field axioms. The rational numbers Q, the real numbers R and the complex numbers C, like any other field, can be regarded as ?-structures in an obvious way:

170 The closed subsets (or induced substructures) of a structure form a lattice. The meet of two subsets is their intersection. The join of two subsets is the closed subset generated by their union. Universal algebra studies the lattice of substructures of a structure in detail.

finite

6 The set of objects studied in discrete mathematics can be finite or infinite. The term finite mathematics is sometimes applied to parts of the field of discrete mathematics that deals with finite sets, particularly those areas relevant to business.

21 2.10 Calculus of finite differences, discrete calculus or discrete analysis

51 Logical formulas are discrete structures, as are proofs, which form finite trees or, more generally, directed acyclic graph structures (with each inference step combining one or more premise branches to give a single conclusion). The truth values of logical formulas usually form a finite set, generally restricted to two values: true and false, but logic can also be continuous-valued, e.g., fuzzy logic. Concepts such as infinite proof trees or infinite derivation trees have also been studied, e.g. infinitary logic.

55 In discrete mathematics, countable sets (including finite sets) are the main focus. The beginning of set theory as a branch of mathematics is usually marked by Georg Cantor's work distinguishing between different kinds of infinite set, motivated by the study of trigonometric series, and further development of the theory of infinite sets is outside the scope of discrete mathematics. Indeed, contemporary work in descriptive set theory makes extensive use of traditional continuous mathematics.

58 Combinatorics studies the way in which discrete structures can be combined or arranged. Enumerative combinatorics concentrates on counting the number of certain combinatorial objects - e.g. the twelvefold way provides a unified framework for counting permutations, combinations and partitions. Analytic combinatorics concerns the enumeration (i.e., determining the number) of combinatorial structures using tools from complex analysis and probability theory. In contrast with enumerative combinatorics which uses explicit combinatorial formulae and generating functions to describe the results, analytic combinatorics aims at obtaining asymptotic formulae. Design theory is a study of combinatorial designs, which are collections of subsets with certain intersection properties. Partition theory studies various enumeration and asymptotic problems related to integer partitions, and is closely related to q-series, special functions and orthogonal polynomials. Originally a part of number theory and analysis, partition theory is now considered a part of combinatorics or an independent field. Order theory is the study of partially ordered sets, both finite and infinite.

72 Algebraic structures occur as both discrete examples and continuous examples. Discrete algebras include: boolean algebra used in logic gates and programming; relational algebra used in databases; discrete and finite versions of groups, rings and fields are important in algebraic coding theory; discrete semigroups and monoids appear in the theory of formal languages.

73 Calculus of finite differences, discrete calculus or discrete analysis

74 Main article: finite difference

75 A function defined on an interval of the integers is usually called a sequence. A sequence could be a finite sequence from some data source or an infinite sequence from a discrete dynamical system. Such a discrete function could be defined explicitly by a list (if its domain is finite), or by a formula for its general term, or it could be given implicitly by a recurrence relation or difference equation. Difference equations are similar to a differential equations, but replace differentiation by taking the difference between adjacent terms; they can be used to approximate differential equations or (more often) studied in their own right. Many questions and methods concerning differential equations have counterparts for difference equations. For instance where there are integral transforms in harmonic analysis for studying continuous functions or analog signals, there are discrete transforms for discrete functions or digital signals. As well as the discrete metric there are more general discrete or finite metric spaces and finite topological spaces.

81 Although topology is the field of mathematics that formalizes and generalizes the intuitive notion of "continuous deformation" of objects, it gives rise to many discrete topics; this can be attributed in part to the focus on topological invariants, which themselves usually take discrete values. See combinatorial topology, topological graph theory, topological combinatorics, computational topology, discrete topological space, finite topological space, topology (chemistry).

graph

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]