Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
reability-concordance.rtf
Скачиваний:
6
Добавлен:
10.02.2016
Размер:
1.72 Mб
Скачать

96 Serial System: Any assembly of units for which the failure of any single unit will cause a failure of the system or overall mission.

110 In so-called zero defect experiments, only limited information about the failure distribution is acquired. Here the stress, stress time, or the sample size is so low that not a single failure occurs. Due to the insufficient sample size, only an upper limit of the early failure rate can be determined. At any rate, it looks good for the customer if there are no failures.

115 Reliability test requirements can follow from any analysis for which the first estimate of failure probability, failure mode or effect needs to be justified. Evidence can be generated with some level of confidence by testing. With software-based systems, the probability is a mix of software and hardware-based failures. Testing reliability requirements is problematic for several reasons. A single test is in most cases insufficient to generate enough statistical data. Multiple tests or long-duration tests are usually very expensive. Some tests are simply impractical, and environmental conditions can be hard to predict over a systems life-cycle. Reliability engineering is used to design a realistic and affordable test program that provides enough evidence that the system meets its reliability requirements. Statistical confidence levels are used to address some of these concerns. A certain parameter is expressed along with a corresponding confidence level: for example, an MTBF of 1000 hours at 90% confidence level. From this specification, the reliability engineer can for example design a test with explicit criteria for the number of hours and number of failures until the requirement is met or failed. Other type tests are also possible.

125 items is often not possible or extremely expensive. By creating redundancy, together with a high level of failure monitoring and the avoidance of common cause failures, even a system with relative bad single channel (part) reliability, can be made highly reliable (mission reliability)on system level. No testing of reliability has to be required for this.

143 Avoid Single Point of Failure

society

64 Reliability engineering differs from safety engineering with respect to the kind of hazards that are considered. Reliability engineering is in the end only concerned with cost. It relates to hazards that could transform into a particular level of loss of revenue for the company or the customer. These can be cost due to loss of production due to system unavailability, unexpected high or low demands for spares, repair costs, man hours, (multiple) re-designs, interruptions on normal production (e.g. due to high repair times or due to unexpected demands for non-stocked spares) and many other indirect costs. Safety engineering, on the other hand, is more specific and regulated. The related reliability Requirements are sometimes extremely high. It deals with unwanted dangerous events (for life and environment) in the same sense as reliability engineering, but does normally not directly look at cost and is not concerned with repair actions after failure. Another difference is the level of impact of failures on society and the control of governments. Safety engineering is often strictly controlled by governments (e.g. Nuclear, Aerospace, Defense, Rail and Oil industries). Furthermore, safety engineering and reliability engineering often have contradicting requirements.For example, in train control systems it is common practice to use many fail-safe devices and to lower trip settings as needed. This will unfortunately lower the reliability. Reliability can be increased here by using redundant systems, this does however lower the safety levels. The only way to increase both reliability and safety on a systems level is by using fault tolerant systems. In this case the "operational"

203 The American Society for Quality has a program to become a Certified Reliability Engineer, CRE. Certification is based on education, experience, and a certification test: periodic re-certification is required. The body of knowledge for the test includes: reliability management, design evaluation, product safety, statistical tools, design and development, modeling, reliability testing, collecting and using data, etc.

206 Some Universities offer graduate degrees in Reliability Engineering (e.g., see University of Tennessee, Knoxville, University of Maryland, College Park, Concordia University, Montreal, Canada, Monash University, Australia and Tampere University of Technology, Tampere, Finland). Other reliability engineers typically have an engineering degree, which can be in any field of engineering, from an accredited university or college program. Many engineering programs offer reliability courses, and some universities have entire reliability engineering programs. A reliability engineer may be registered as a Professional Engineer by the state, but this is not required by most employers. There are many professional conferences and industry training programs available for reliability engineers. Several professional organizations exist for reliability engineers, including the IEEE Reliability Society, the American Society for Quality (ASQ), and the Society of Reliability Engineers (SRE).

stated

1 Reliability engineering is an engineering field, that deals with the study, evaluation, and life-cycle management of reliability: the ability of a system or component to perform its required functions under stated conditions for a specified period of time. It is often measured as a probability of failure or a measure of availability. However, maintainability is also an important part of reliability engineering.

38 The ability of a device or system to perform a required function under stated conditions for a specified period of time;

39 The probability that a functional unit will perform its required function for a specified interval under stated conditions.

54 the probability that a device will perform its intended function during a specified period of time under stated conditions.

62 Fourth, reliability is restricted to operation under stated (or explicitly defined) conditions. This constraint is necessary because it is impossible to design a system for unlimited conditions. A Mars Rover will have different specified conditions than the family car. The operating environment must be addressed during design and testing. Also, that same rover, may be required to operate in varying conditions requiring additional scrutiny.

strategy

70 strategy) can influence the reliability of a system (e.g. by preventive maintenance) - although it can never bring it above the inherent reliability. Maintainability influences the availability of a system - in theory this can be almost unlimited if one would be able to repair a failure in a very short time.

116 The combination of reliability parameter value and confidence level greatly affects the development cost and the risk to both the customer and producer. Care is needed to select the best combination of requirements - e.g. cost-effectiveness. Reliability testing may be performed at various levels, such as component, subsystem, and system. Also, many factors must be addressed during testing and operation, such as extreme temperature and humidity, shock, vibration, or other environmental factors (like loss of signal, cooling or power; or other catastrophes such as fire, floods, excessive heat, physical or security violations or other myriad forms of damage or degradation). Reliability engineering must assess the root cause of failures and devise corrective actions. Reliability engineering determines an effective test strategy so that all parts are exercised in relevant environments in order to assure the best possible reliability under understood conditions. For systems that must last many years, reliability engineering may be used to design accelerated life tests.

160 A key aspect of reliability testing is to define "failure". Although this may seem obvious, there are many situations where it is not clear whether a failure is really the fault of the system. Variations in test conditions, operator differences, weather, and unexpected situations create differences between the customer and the system developer. One strategy to address this issue is to use a scoring conference process. A scoring conference includes representatives from the customer, the developer, the test organization, the reliability organization, and sometimes independent observers. The scoring conference process is defined in the statement of work. Each test case is considered by the group and "scored" as a success or failure. This scoring is the official result used by the reliability engineer.

161 As part of the requirements pha se, the reliability engineer develops a test strategy with the customer. The test strategy makes trade-offs between the needs of the reliability organization, which wants as much data as possible, and constraints such as cost, schedule, and available resources. Test plans and procedures are developed for each reliability test, and results are documented in official reports.

tools

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]