Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Very well.doc
Скачиваний:
70
Добавлен:
09.02.2016
Размер:
584.19 Кб
Скачать

35) Глин с токостабилизирующим двухполюсником.

Рассмотрим принцип построения ГЛИН с токостабилизирующим двухполюсником, обеспечивающим протекание через него постоянного тока независимо от приложенного напряжения (рис. 18.17). Простейшим токостабилизирующим элементом является транзистор. При постоянном токе базы (например, iбэ), даже при значительном уменьшении напряжения uэк между эмиттером и коллектором (например, от U2 до U1) коллекторный ток транзистора уменьшается незначительно.

Рис. 18.17. ГЛИН с токостабилизирующим двухполюсником

Недостатком данной схемы является то, что при подключении к выходу (т.е. к емкости С) сопротивления нагрузки искажается линейность выходного напряжения.

Рассмотрим ГЛИН с компенсирующей ОС (на основе ОУ) (рис. 18.18). В момент времени t1 ключ К размыкается и осуществляется и осуществляется прямой ход, а в момент времени t2 ключ замыкается, емкость С разряжается и на выходе устанавливается нулевое напряжения. Емкость С заряжается постоянным током, а значит, напряжение на ней (как и напряжение Uвых) изменяется по линейному закону (рис. 18.18,б). Компенсирующее напряжение Uк повторяет напряжение на емкости Uc при размыкается ключа и заряде емкости от источника U. Поскольку компенсирующее напряжение включено встречно по отношению к напряжению на емкости, то напряжение, приложенное к резистору R, все время постоянно и равно U.

Рис. 18.18. ГЛИН с компенсирующей обратной связью

Протекающий через резистор R ток определяется выражением

iR=(E-Uвх)/R.

Если ОУ близок к идеальному, (К→ ∞, Uвх→ 0, i→ 0), то iR=E/R=const. Тогда выходное напряжение определяется выражением

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]