Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МОДУЛЬ ПО ТЕХНО.docx
Скачиваний:
83
Добавлен:
08.02.2016
Размер:
361.27 Кб
Скачать

41. Применения биотехнологических методов для очистки газо-воздушных выбросов и деградации ксенобиотиков

Биологические методы очистки газовоздушных выбросов начали применять сравнительно недавно, и пока в ограниченных масштабах.

Биологические методы очистки воздуха базируются на способностимикроорганизмов разрушать в аэробных условиях широкий спектр веществ исоединений до конечных продуктов СО2и Н2О.

Микроорганизмы утилизируют аммиак, окисляют сернистый газ, сероводород и диметилсульфоксид. Образуемые сульфаты утилизируются другими микробными видами. Есть данные об эффективном окислении аэробными карбоксидобактериямимоноокиси углерода, являющейся одним из наиболее опасных воздушных загрязнителей.

Для биологической очистки воздуха применяют три типа установок:биофильтры, биоскрубберы и биореакторы с омываемым слоем.

42. Биофильтры

Основным элементом биофильтра для очистки воздухаявляется фильтрующий слой, который сорбирует токсические вещества из воздуха. Далее эти вещества в растворенном виде диффундируют к микробным клеткам, включаются в них и подвергаются деструкции.В качестве носителя для фильтрующего слоя используют природные материалы – компост, торф и др.Воздух, подлежащий очистке, подается вентилятором в систему, проходит через фильтрующий слой в любом направлении, снизу вверх или наоборот. При этом воздух должен проходить через всю массу фильтрующего слоя равномерно. Поэтому требуется однородность слоя и определенная степень влажности.

  1. Биоскрубберы

Биоскрубберы по сравнению с биофильтрами занимают меньшую площадь, так как представляют собой башни высотой в несколько метров. Эксплуатационные затраты при использовании биоскрубберов выше, так как процесс биоочистки воды требует существенных затрат. Применение биоскрубберов эффективно при наличии в воздухе хорошо растворимых токсических веществ. Производительность биоскрубберов существенно выше по сравнению с биофильтрами, при этом эффективность очистки также высока.

Биоскрубберы отличаются от биофильтров тем, что представляют собой систему из двух аппаратов. Первый аппарат представляет собой скруббер (абсорбционную колонну), где загрязняющие вещества абсорбируется в водной фазе и второй – это биореактор, обычно блок очистки с активным илом, где соединения деградируют. Для повышения эффективности улавливания в воду могут вводиться специальные абсорбционные добавки.

Для обеспечения активной жизнедеятельности микроорганизмов в растворе поддерживается определенная минимальная концентрация биогенных веществ: азота и фосфора. Очищенный абсорбент вновь подается на орошение в абсорбер. Установка имеет замкнутый цикл циркуляции абсорбента и не имеет стоков.

  1. Биореакторы с омываемым слоем.

Наиболее перспективными для очистки воздуха являются биореакторы с омываемым слоем. Эти установки, практически не уступая в степени очистки, характеризуются более высокой удельной производительностью (несколько тысяч кубометров очищаемого воздуха в час). Такие малогабаритные установки очень эффективны для очистки воздуха предприятий интенсивного животноводства.

Биореактор с омываемым слоем отличается от обычного биофильтра только тем, что биопленка, которая образуется на поверхности синтетической загрузки, не способна обеспечить микроорганизмы требуемыми питательными веществами, поэтому они должны подаваться с водой, которая постоянно циркулирует через реактор при прямо- или противоточном течении относительно газового потока. При этом избыточная биомасса удаляется с поверхности загрузки, что предотвращает её засорение и увеличивает срок службы

  1. Биодеградация ксенобиотиков

Ксенобиотики – чужеродные для организмов соединения (пестициды, ПАВ, красители, лекарственные вещества и пр.), которые практически не включаются в элементные циклы углерода, азота, серы или фосфора.

Для биодеградации ксенобиотиков лучше использовать ассоциации микроорганизмов, так как они более эффективны, чем отдельно взятые виды.. Один вид микроорганизмов может непосредственно участвовать в разложении ксенобиотиков, а другой – поставлять недостающие питательные вещества. Это может быть метаболическая «атака» на субстрат, когда синтезируются разные компоненты ферментативного комплекса, или же цепочка ферментативных реакций (многосубстратные конверсии) и т.д.

Особенно трудно разлагаются такие биоциды, как детергенты, пластики и углеводороды. Самыми способными к борьбе с загрязнителями различного типа являются представители рода Pseudomonas – они практически «всеядны». Клетки этих микроорганизмов способны разлагать большое число молекул углеводородов и ароматических соединений, таких как бензол, ксилол, толуол.

Еще эффективнее, чем бактерии, справляются с посвенными загрязнителями грибы. Они могут разрушать такие вещества, как пентахлорбензол, пентахлофенол. В одном из экспериментов грибами обработали около 10000 тонн почвы с территории деревоперерабатывающего комплекса. В этой почве содержание пентахлорфенола достигало 700 мг/кг, но за год деятельности оно снизилось до 10 мг/кг, что является допустимой нормой. Бактерии смогли бы переработать эту почву лишь за 4-5 лет. Грибы активны и зимой, разрушают высокомолекулярные полиароматические углеводороды, действуют внеклеточно, выделяя неспецифические ферменты. Стоимость грибной и бактериальной очистки одинаковы, но применение грибов позволяет сокращать сроки деградации и существенно удешевляет ее.

Большую опасность для окружающей среды представляют полиароматические углеводороды. Так, полихлорбифенилы (ПХБ) являются очень устойчивыми соединениями, долго присутствующими в окружающей среде в результате прочной адсорбции биологическими и осадочными породами и плохой миграции. Микроорганизмы не способны глубоко деградировать эти соединения, тем не менее, модифицируют их. Установлена способность микробных сообществ деградировать промышленные ПХБ с образованием новых типов углеводородов, при этом молекулы с низкой степенью хлорирования расщепляются. Устойчивое полиароматическое соединение бензапирен не минерализуется в системах активного ила, хотя описано несколько микробных видов, способных частично его метаболизировать. В ходе деградации бензапирена образуются канцерогенные соединения (гидрокси- и эпоксипроизводные). Также устойчив к деградации полистирол, хотя описано несколько случаев частичной деградации измельченных автомобильных шин, изготовленных из стирол-бутадиеновой резины. Есть сообщения о росте микробного сообщества на стироле, в ходе которого разрушается ингибитор полимеризации 4-трет-бутилкатехол, далее происходит свободнорадикальная полимеризация стирола с осаждением образующегося полистирола. Этот полимер впоследствии под воздействием микробного сообщества исчезает из почвы.

  1. Биологические методы очистки природной среды от нефтяных загрязнений

Очистка как сточных вод нефтяной промышленности, так и непосредственное загрязнение в результате разлива нефти. Сточные воды нефтяной промышленности очищают биологическими методами после удаления большей части смеси различных углеводородов физическими методами. Для этого применяют аэрируемые системы биоочистки с активным илом, содержащим адаптированное к компонентам нефти сообщество. Скорость деградации зависит от качественного состава и концентрации углеводородов, а также температуры и степени аэрации среды. Наиболее эффективно биодеградация осуществляется, когда нефть эмульгирована в воде. Особую проблему представляют выбросы и аварийные разливы нефти на поверхность почвы. Это приводит к загрязнению не только пахотных земель, но также и источников питьевой воды. В почве содержится много микробных видов, способных деградировать углеводороды, но их активность часто низка, в том числе и в результате дефицита отдельных биогенных элементов. В таких случаях эф-фективным является внесение в почву так называемых олеофильных удобрений, в состав которых входят соединения азота, фосфаты и другие минеральные элементы, концентрации которых в почве достаточно низки и лимитируют рост микроорганизмов. После внесения этих соединений в почву концентрация микроорганизмов-деструкторов существенно возрастает, и возрастает скорость деградации нефти.

В 1979 г. Чакрабарти (в то время совместно с компанией «Дженерал элек-трик») получил штамм, способный быстро расти на неочищенной нефти.

Эти микроорганизмы удобно использовать для очистки нефтяных пятен на суше или море при различных авариях. Для большей эффективности создают микроэмульсию, содержащую бактериальные штаммы и капсулы со смесью основных питательных элементов - азота, фосфора и калия внутри. Добавление этих веществ стимулирует размножение бактриальных штаммов. Применение такого метода позволяет очистить от 70 до 90% загрязненной поверхности, за это же время очищается всего порядка 10-20% необработанной поверхности.

Преимущество бактериальной очистки по сравнению с химической в том, что она не вызывает появления нового загрязняющего агента в окружающей среде. Плотность фитопланктона после бактериальной очистки повышается. Некоторые микроорганизмы способны изменять молекулу ксенобиотика и делать ее доступной и привлекательной для других микроорганизмов («ко-метаболизм).

  1. Техногенные загрязнения и их источники

Основными источниками антропогенных аэрозольных загрязнений воздуха являются теплоэлектростанции (ТЭС), потребляющие уголь.

В выбросах предприятий различных отраслей промышленности и транспорта содержится большое число различных вредных примесей. Почти из всех источников в атмосферу поступают диоксид серы (SO2), пыль, оксид углерода (CO), оксиды азота (NO, NO2). Много вредных веществ образуется при сжигании топлива.

  • Только тепловые электростанции являются источником почти половины (45 %) общего количества сернистых соединений, поступающих в воздушный бассейн. При сжигании топлива в атмосферу выбрасываются также в большом количестве оксид углерода, оксиды азота и несгоревшие твердые вещества в виде золы и сажи. В меньших количествах при сжигании как твердого, так и жидкого топлива могут выбрасываться хлористый натрий и магний, оксиды железа, ванадий, оксиды никеля и кальция, ртуть и ряд других веществ. При сжигании газообразного топлива в основном выбрасываются оксиды азота. При нарушении режима горения, т.е. при сжигании газа в условиях недостаточного количества воздуха или при охлаждении пламени горелки, в атмосферу выбрасываются углеводороды. При этом могут выделяться и ароматические углеводороды, часть которых относится к канцерогенным веществам.

  • Значительное количество топлива сжигается автомобильным, железнодорожным, морским, речным и авиационным транспортом. Основными вредными примесями, содержащимися в выхлопных газах двигателей внутреннего сгорания, являются: оксид углерода, оксиды азота, углеводороды (в том числе канцерогенные), альдегиды и другие вещества. При работе двигателей, использующих бензин, выбрасываются также свинец, хлор, бром, иногда фосфор, при работе дизельных двигателей - значительное количество сажи. Авиационные двигатели выбрасывают в атмосферу оксид углерода, оксиды азота, альдегиды, углеводороды, оксиды серы и сажу.

  • Большой вклад в загрязнение атмосферы вносят предприятия черной металлургии. Выбросы предприятий этой отрасли составляют 10 - 15 % общих выбросов промышленности в целом по стране. В выбросах предприятий черной металлургии содержатся пыль, диоксид серы, оксид углерода, оксиды азота, сероводород, фенол, сероуглерод, бенз(а)пирен и др. Наибольшее количество диоксида серы содержится в выбросах агломерационных фабрик, энергетических установок и предприятий по производству чугуна.

  • При производстве цветных металлов в атмосферу выбрасываются диоксид серы, оксид углерода и пыль, оксиды различных металлов (особенно, свинец, медь, никель). Производство алюминия электролизным методом сопровождается выбросами в атмосферу фтористых соединений и оксида углерода.

  • От предприятий химической промышленности в атмосферу поступают разнообразные вредные вещества, главным образом в виде газов. При производстве серной кислоты с отходящими газами выбрасываются в атмосферу сернистые соединения, оксиды азота, соединения мышьяка и токсичная пыль. При производстве азотной кислоты - оксиды азота, аммиак и оксид углерода, при производстве хлора - хлор и соляная кислота, при производстве суперфосфата - фтористоводородная и кремнийфтористоводородная кислота, при производстве целлюлозы и бумаги - диоксид серы, дисульфид, сероводород, сероуглерод, хлор, формальдегид и меркаптаны, при производстве искусственного волокна - сероводород и сероуглерод.

  • Большое количество вредных веществ выбрасывается в атмосферу предприятиями нефтяной промышленности, в том числе оксиды серы и азота, оксид углерода, углеводороды, сероводород, меркаптаны и несгоревшие твердые частицы, содержащие бенз(а)пирен.

  1. Классификация загрязнителей атмосферы.

По своему физическому состоянию, например, загрязнители атмосферы делятся на твердые (пыли, дымы), жидкие (туманы), газообразные (газы, пары) и комбинированные.

От общей массы выбрасываемых в атмосферу веществ газы (пары) составляют около 90%. По оценке ВОЗ, из бо¬лее чем 6 млн известных химических соединений практически используется до 500 тыс. соединений. Из них около 40 тыс. обладают вредными для человека свойствами, а 12 тыс. являются токсичными. Причемлюбойхи¬мическийзагрязнительатмосферыимеетпорогдействия.

Атмосферные загрязнители подразделяются на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом их превращений. Например, поступающий в ат¬мосферу диоксид серы окисляется кислородом воздуха до триоксида серы, который затем, взаимодействуя с водяными парами, образует капельки серной кислоты. При оценке загрязнения атмосферы учитывается период пребывания загрязняющих веществ в ней. В атмосферу одновременно могут поступать вещества, оказывающие на живые организмы сходное воз¬действие, то есть обладающие эффектом суммации вредного действия.

Все вредные вещества (ВВ) в соответствии с ГОСТ 12.1.0.07-76 по степе¬ни воздействия на организм человека подразделяют на четыре класса опас¬ности:

1-й - вещества чрезвычайно опасные, ПДК менее 0,1 мг/м3;

2-й - ве¬ществавысокоопасные, ПДК 0,1-1 мг/м3;

3-й - вещества умеренно опасные, ПДК 1,1-10 мг/м3;

4-й - вещества мало опасные, ПДК более 10 мг/м3 [3].

Из многочисленных контаминантов атмосферы (по определению коми¬тета экспертов ВОЗ) основными являются взвешенные частицы (аэрозоли различного состава), затем следуют сернистые соединения и оксиданты, то есть вещества, образующиеся в атмосферном воздухе в результате фото¬химических превращений.

Аэрозоли - это дисперсные системы, в которых дисперсион¬ной средой служит газ, а дисперсионными фазами являются твердые или жидкие частицы.

Обычно размеры частиц аэрозолей ограничивают интер¬валом 10-7-10-3 см. Аэрозоли делятся на три группы:

1. пыли - коллективы, состоящие из твердых частиц, диспергированных в га-зообразной среде.

2. дымы - все аэрозоли, которые получаются при конденсации газа.

3. туманы - коллективы жидких частиц в газообразной среде.

Сейчас в земной атмосфере взвешено около 20 млн т частиц, из кото¬рых примерно три четверти приходится на долю выбросов промышленных предприятий.

Особое значение пыли и других взвешенных частиц объясняется тем, что они загрязняют атмосферу не только в результате прямых выбросов, но в большей мере в результате различных превращений газообразных ве¬ществ, выбрасываемых в атмосферу (сернистых соединений, оксидов азо¬та, углеводородов) с образованием мелкодисперсных аэрозолей.

  1. Основные источники загрязнения атмосферного воздуха.

Группа

Аэрозоли

Газообразные выбросы

Котлы и промышленные печи

Зола,

сажа

NO2, SO2, а также CO, альдегиды (HCHO), органические кислоты, бензапирен

Автомобильные двигатели

Сажа

CO, NO2, альдегиды, углеводороды неканцерогенные, бензапирен

Нефтеперерабатывающая промышленность

Пыль,

сажа

SO2, H2S, NH3, NОx, CO, углеводороды, кислоты, альдегиды, канцерогенные вещества

Химическая промышленность

Пыль,

сажа

В зависимости от процесса (H2S, CO, NH3), кислоты, органические вещества, растворители, летучие сульфиды и др.

Металлургия и коксохимия

Пыль,

оксиды

SO2, CO, NH3, NOX, фтористые и цианистые соединения, органические вещества, бензапирен

Горная промышленность

Пыль,

сажа

В зависимости от процесса (CO, фтористые соединения, органические вещества)

Пищевая промышленность

NH3, H2S, смеси органических соединений

Промышленность строительных материалов

Пыль

CO, органические соединения

  1. Методы и аппараты для очистки отходящих газов.

В соответствии с характером вредных примесей различают методы очистки газов от аэрозолей и от газообразных и парообразных примесей. Все способы очистки газов определяются в первую очередь физико-химическими свойствами примесей, их агрегатным состоянием, дисперсностью, химическим составом и др. Разнообразие вредных примесей в промышленных газовых выбросах приводит к большому разнообразию методов очистки, применяемых реакторов и химических реагентов.

  1. Краткая характеристика некоторых методов очистки газов.

Методы очистки по их основному принципу можно разделить на механическую очистку, электростатическую очистку и очистку с помощью звуковой и ультразвуковой коагуляции.

Механическая очистка газов включает сухие и мокрые методы. К сухим методам относятся:

1) гравитационное осаждение;

2) инерционное и центробежное пылеулавливание;

3) фильтрация.

Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах. Для уменьшения высоты осаждения частиц в осадительных камерах установлено на расстоянии 40–100 мм множество горизонтальных полок, разбивающих газовый поток на плоские струи. Степень очистки воздуха в пылеосадочных камерах не превышает 50–60 %. Метод пригоден лишь для предварительной, грубой очистки газов.

Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи). Газы обеспыливаются, выходя через щели и меняя при этом направление движения. Частицы пыли с d < 20 мкм в жалюзийных аппаратах не улавливаются. Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода – быстрое истирание или забивание щелей.

Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов, степень очистки составляет около 90% при диаметре частиц d > 30 мкм. Для частиц с d = 30 мкм степень очистки снижается до 80%, а при d = 5 мкм она составляет менее 40%. Циклоны широко применяют при грубой и средней очистке газа от аэрозолей.

Фильтрация основана на прохождении очищаемого газа через различные фильтрующие ткани (хлопок, шерсть, химические волокна, стекловолокно и др.) или через другие фильтрующие материалы (керамика, металлокерамика, пористые перегородки из пластмассы и др.). Фильтрация – весьма распространенный прием тонкой очистки газов. Ее преимущества – сравнительная низкая стоимость оборудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание фильтрующего материала пылью.

Мокрая очистка газов от аэрозолей основана на промывке газа жидкостью (обычной водой) при возможно более развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Этот универсальный метод очистки газов от частиц пыли, дыма и тумана любых размеров является наиболее распространенным приемом заключительной стадии механической очистки, в особенности для газов, подлежащих охлаждению. К аппаратам мокрой очистки относятся насадочные и центробежные скрубберы, скрубберы Вентури, форсуночные скрубберы, тарелочные и барботажно-пенные скрубберы

Электростатическая очистка газов служит универсальным средством,пригодным для любых аэрозолей, включая туманы кислот, и при любых размерахчастиц. Метод основан на ионизации и зарядке частиц аэрозоля припрохождении газа через электрическое поле высокого напряжения, создаваемоекоронирующими электродами. Осаждение частиц происходит на заземленныхосадительных электродах. Степень очистки от аэрозолей – выше 90, достигая 99,9%. Недостаток этого метода – большие затраты средств на сооружение и содержание очистных установок и значительный расход энергии на создание электрического поля.

Звуковая и ультразвуковая коагуляция, а также предварительная электризация пока мало применяются в промышленности и находятся в основном в стадии разработки. Они основаны на укрупнении аэрозольных частиц, облегчающем их улавливание традиционными методами.

Очистка газов от парообразных и газообразных примесей.

Промышленные способы очистки газовых выбросов от газо- и парообразных токсичных примесей можно разделить на три основные группы:

1) абсорбция жидкостями;

2) адсорбция твердыми поглотителями ;

3) каталитическая очистка.

В меньших масштабах применяются термические методы сжигания (или дожигания) горючих загрязнений, способ химического взаимодействия примесей с сухими поглотителями и окисление примесей озоном.

Абсорбционные методы служат для технологической и санитарной очистки газов. Они основаны на избирательной растворимости газо- и парообразных примесей в жидкости (физическая абсорбция) или на избирательном извлечении примесей химическими реакциями с активным компонентом поглотителя (хемосорбция). Абсорбционная очистка – непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цикла очистки. Хемосорбция в особенности применима для тонкой очистки газов при сравнительно небольшой начальной концентрации примесей. В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелочей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, оксидов марганца и магния, сульфат магния и др. Очистная аппаратура аналогична уже рассмотренной аппаратуре мокрого улавливания аэрозолей. Абсорбционные методы характеризуются непрерывностью и универсальностью процесса, экономичностью и возможностью извлечения больших количеств примесей из газов. Недостаток этого метода в том, что насадочные скрубберы, барботажные и даже пенные аппараты обеспечивают достаточно высокую степень извлечения вредных примесей и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технологические схемы мокрой очистки, как правило, сложны, многоступенчаты и очистные реакторы (особенно скрубберы) имеют большие объемы. Любой процесс мокрой абсорбционной очистки выхлопных газов от газо- и парообразных примесей целесообразен только в случае его цикличности и безотходности. Но и циклические системы мокрой очистки конкурентоспособны только тогда, когда они совмещены с пылеочисткой и охлаждением газа.

Адсорбционные методы основаны на избирательном извлечении из парогазовой смеси определенных компонентов при помощи адсорбентов — твердых высокопористых материалов, обладающих развитой удельной поверхность. Промышленные адсорбенты, чаще всего применяемые в газоочистке, — это активированный уголь, силикагель, алюмогель, природные и синтетические цеолиты (молекулярные сита). Чаще всего для санитарной очистки газов применяют активный уголь благодаря его высокой поглотительной способности и легкости регенерации.

Общие достоинства адсорбционных методов очистки газов:

1) глубокая очистка газов от токсичных примесей;

2) сравнительная легкость регенерации этих примесей с превращением их в товарный продукт или возвратом в производство; таким образом осуществляется принцип безотходной технологии. Недостатки большинства адсорбционных установок — периодичность процесса и связанная с этим малая интенсивность реакторов, высокая стоимость периодической регенерации адсорбентов.

Каталитические методы очистки газов основаны на реакциях в присутствии твердых катализаторов. В результате каталитических реакций примеси, находящиеся в газе, превращаются в другие соединения, т. е. в отличие от рассмотренных методов примеси не извлекаются из газа, а трансформируются в безвредные соединения, присутствие которых допустимо в выхлопном газе, либо в соединения, легко удаляемые из газового потока. Если образовавшиеся вещества подлежат удалению, то требуются дополнительные операции (например, извлечение жидкими или твердыми сорбентами). Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоких температурах и обычном давлении, а также при весьма малых начальных концентрациях примесей. Каталитические методы позволяют утилизировать реакционную теплоту, т.е. создавать энерготехнологические системы. Установки каталитической очистки просты в эксплуатации и малогабаритны. Недостаток многих процессов каталитической очистки — образование новых веществ, которые подлежат удалению из газа другими методами, что усложняет установку и снижает общий экономический эффект.

Термические методы обезвреживания газовых выбросов применимы при высокой концентрации горючих органических загрязнителей или оксида углерода. Простейший метод — факельное сжигание — возможен, когда концентрация горючих загрязнителей близка к нижнему пределу воспламенения. В этом случае примеси служат топливом, температура процесса 750—900 °С и теплоту горения примесей можно утилизировать. Когда концентрация горючих примесей меньше нижнего предела воспламенения, то необходимо подводить некоторое количество теплоты извне. Чаще всего теплоту подводят добавкой горючего газа и его сжиганием в очищаемом газе. Горючие газы проходят систему утилизации теплоты и выбрасываются в атмосферу. Такие энерготехнологические схемы применяют при достаточно высоком содержании горючих примесей, иначе возрастает расход добавляемого горючего газа.

Для полноценной очистки газовых выбросов целесообразны комбинированные методы, в которых применяется оптимальное для каждого конкретного случая сочетание грубой, средней и тонкой очистки газов и паров.

  1. Устройства для очистки технологических выбросов в атмосферу от аэрозолей: сухие пылеуловители (циклоны); мокрые пылеуловители (скрубберы); фильтры; электрофильтры.

Сухие пылеуловители (циклоны)

Сухие пылеуловители предназначены для грубой механической очистки от крупной и тяжелой пыли. Принцип работы – оседание частиц под действием центробежной силы и силы тяжести. Широкое распространение получили циклоны различных видов: одиночные, групповые, батарейные.

Пылегазовый поток вводится в циклон через входной патрубок 2, закручивается и совершает вращательно-поступательное движение вдоль корпуса 1. Частицы пыли отбрасываются под действием центробежных сил к стенке корпуса, а затем под действие силы тяжести собираются в пылевой

бункер 4, откуда периодически удаляются. Газ, освободившись от пыли, разворачивается на 180º и выходит из циклона через трубу 3.

Мокрые пылеуловители (скрубберы)

Мокрые пылеуловители характеризуются высокой эффективностью очистки от мелкодисперсной пыли размером до 2 мкм. Работают по принципу осаждения частиц пыли на поверхность капель под действием сил инерции или броуновского движения.

Запыленный газовый поток по патрубку 1 направляется на зеркало жидкости 2, на котором осаждаются наиболее крупные частицы пыли. Затем газ поднимается навстречу потоку капель жидкости, подаваемой через форсунки, где происходит очистка от мелких частиц пыли.

Фильтры

Предназначены для тонкой очистки газов за счет осаждения частиц пыли (до 0,05 мкм) на поверхности пористых фильтрующих перегородок. По типу фильтрующей загрузки различают тканевые фильтры (ткань, войлок, губчатая резина) и зернистые. Выбор фильтрующего материала определяется требованиями к очистке и условиями работы: степень очистки, температура, агрессивность газов, влажность, количество и размер пыли и т.д.

Электрофильтры

Электрофильтры – эффективный способ очистки от взвешенных

частиц пыли (0,01 мкм), от масляного тумана. Принцип действия основан на ионизации и осаждении частиц в электрическом поле. У поверхности коронирующего электрода происходит ионизация пылегазового потока. Приобретая отрицательный заряд, частицы пыли движутся к осадительному электроду, имеющему знак, противоположный заряду коронирующего электрода. По мере накопления на электродах частицы пыли падают под действием силы тяжести в сборник пыли или удаляются встряхиванием.

  1. Загрязнение атмосферы двигателями внутреннего сгорания.

Автомобильный транспорт наиболее агрессивен в сравнении с другими видами транспорта по отношению к окружающей среде. Он является мощным источником ее химического, шумового и механического загрязнения. Следует подчеркнуть, что с увеличением автомобильного парка уровень вредного воз­действия автотранспорта на окружающую среду интенсивно возрастает. Так, если в начале 70-х годов ученые-гигиенисты определили долю загрязнений, вносимых в атмосферу автомобильным транспортом, в среднем равной 13%, то в настоящее время она достигла уже 50% и продолжает расти. А для горо­дов и промышленных центров доля автотранспорта в общем объеме загрязне­ний значительно выше и доходит до 70% и более, что создает серьезную эко­логическую проблему, сопровождающую урбанизацию.

  1. Основные загрязнители транспортных средств.

Основными загрязнителями транспортных средств являются углеводороды, оксид углерода и оксиды азота.

Углеводороды – это широкий класс совершенно произвольных смесей углеводородных соединений. Они происходят из бензина, дизельного топлива и продуктов их сгорания. В состав этих топлив входят сотни углеводородных соединений. Для упрощения обычно из углеводородов выделяют какое-то определенное соединение и оперируют в дальнейшем с ним, предполагая, что остальные эквивалентны ему. В качестве такого соединения выбирают обычно метан (СН4), пропан (С3Н8) или гексан (С6Н14).

В инженерной терминологии для неизвестной смеси оксидов азота принято обозначение NOx. Как правило, в выбросах оксидов азота доминирует оксид азота (NO) с небольшой примесью (<10 %) диоксида азота (NO2). В атмосферных условиях NO превращается в NO2.

Выбросы двигателей внутреннего сгорания (ДВС) делятся на выбросы от карбюраторных и дизельных двигателей. Такое разделение связано с тем, что карбюраторные двигатели (КД) работают с однородными топливно-воздушными смесями, в то время как дизельные двигатели (ДД) – с гетерогенными смесями.

  1. Источники токсичных веществ в автомобиле.

В автомобилях имеется несколько источников токсичных веществ, основными из которых являются три:

  • отработавшие газы (СО, СН, NOx, сажа, Pb и т.д.)

  • картерные газы

  • топливные испарения

Наибольшая доля химического загрязнения окружающей среды авто­мобильным транспортом приходится на отработавшие газы двигателей внут­реннего сгорания.

  1. Вредные и токсичные вещества, содержащиеся в отработавших газах двигателей.

Всего в отработавших газах обнаружено около 280 компонентов. По своим химическим свойствам, характеру воздействия на организм человека вещества, содержащиеся в отработавших картерных газах, подразделяются на несколько групп.

В группу нетоксичных веществ входят азот, кислород, водород, водяные пары, а также диоксид углерода.

Группу токсичных веществ составляют: оксид углерода СО, оксиды азота NOх, многочисленная группа углеводородов СmНn, включающая парафины, олефины, ароматики и другие.

Далее следуют альдегиды, сажа.

При сгорании сернистых топлив образуются неорганические газы - диоксиды серы и сероводород.

Особую группу составляют канцерогенные полициклические углеводороды (ПАУ), в том числе - наиболее активный бенз(а)пирен, являющийся индикатором присутствия канцерогенов в отработавших газах.

Вредные и токсичные вещества, содержащиеся в отработавших газах двигателей, в зависимости от механизма их образования можно разделить на группы:

1) углеродсодержащие вещества – продукты полного и неполного сгорания топлива (СО2, CO, углеводороды, в том числе полициклические ароматические, сажа);

2) вещества, механизм образования которых непосредственно не связан с процессом сгорания топлива (оксиды азота – по термическому механизму);

3) вещества, выброс которых связан с примесями, содержащимися в топливе (соединения серы, свинца, других тяжелых металлов), воздухе (кварцевая пыль, аэрозоли), а также образующимися в процессе износа деталей (оксиды металлов).

  1. Некоторые особенности загрязнение атмосферы автотранспортом.

Наиболее загрязненный выхлоп автомобилей происходит во время запуска двигателя и при его прогреве. Больше всего загрязнены выхлопами гаражи, паркинги и тоннели, где концентрация этих веществ в воздухе может достигать предельных границ.

Количество углеводородов резко увеличивается, если двигатель работает на малых оборотах или при увеличенной скорости, например, при старте на перекрестках у светофоров. В момент нажатия на педаль акселератора выделяется большое количество несгоревших частиц (в 10-12 раз больше чем при нормальном режиме). Кроме того, в несгоревших выхлопных газах двигателя при нормальном режиме содержится около 2,7% окиси углерода, количество которого увеличивается при снижении скорости примерно до 3,9-4%, а на тихом ходу – до 6,9%.

Выхлопные газы, в том числе окись углерода, углекислый газ и многие другие выбросы двигателей, тяжелее воздуха, поэтому все они скапливаются у земли, отравляя человека и растительность. При полном сгорании топлива в двигателе часть углеводородов превращается в сажу, содержащую различные смолы. Особенно при неисправности двигателя за автомобилем тянется черный шлейф дыма, содержащий полициклические углеводороды и в том числе бензапирен. В выхлопных газах содержатся также оксиды азота, альдегиды, обладающие резким запахом и раздражающим эффектом, соединения неорганического свинца.

  1. Влияние токсичных компонентов отработавших газов и испарений на человека.

Оксид углерода (СО). Плот­ность СО меньше, чем воздуха, и поэтому он легко может распространятся в атмосфере. Поступая в организм человека с вдыхаемым воздухом, СО сни­жает функцию кислородного питания, вытесняя кислород из крови (поглощаемость СО кровью в 240 раз выше поглощаемости кисло­рода). Прямое влияние оказывает СО на тканевые биохимические процессы, влекущие за собой нарушение жирового и углеводного обмена, витаминного баланса и т.д. В результате кислородного голодания токсический эффект СО связан с непосредственным влиянием на клетки центральной нервной системы. Повышение концентрации окиси углерода опасны и тем, что в результате кислородного голодания организма ослабляется внимание, замедля­ется реакция, падает работоспособность водителей, что влияет на безопас­ность дорожного движения.

Углеводородные соединения по их биологическому действию изуче­ны пока еще недостаточно. Однако при наличии определенных атмосферных условий углеводоро­ды служат исходными продуктами для образования чрезвычайно токсичных продуктов – фотооксидантов, обладающих сильными раздражающим и обще­токсичным действием на органы человека, и образуют фотохимический смог. Особенно опасными из группы углеводородов являются канцерогенные веще­ства. Наиболее изученным является бенз(а)пирен. Установлено, что в местах непосредственного контакта канцерогенных веществ с тканью появляются злокачественные опухоли. В случае попадания канцерогенных веществ, осев­ших на пылевидных частицах, через дыхательные пути в легкие они задержи­ваются в организме.

Оксид азота. При попадании в организм чело­века соединяются с водой. При этом они образуют в дыхательных путях со­единения азотной и азотистой кислот, раздражающе действуя на слизистые оболочки глаз, носа и рта. Оксиды азота участвуют в процессах, ведущих к образованию смога. Опасность их воздействия заключается в том, что от­равление организма проявляется не сразу, а постепенно, причем нет каких-либо нейтрализующих средств.

Сажа при попадании в организм человека вызывает негативные послед­ствия в дыхательных органах. Если относительно крупные частицы сажи раз­мером 2…10 мкм легко выводятся из организма, то мелкие размером 0,5…2 мкм задерживаются в легких, дыхательных путях, вызывают аллергию. Как любая аэрозоль, сажа загрязняет воздух, ухудшает видимость на дорогах, но, самое главное, на ней адсорбируются тяжелые ароматические-углеводороды, в том числе бенз(а)пирен.

Сернистый ангидрид2. Раз­дражающее действие на верхние дыхательные пути объясняется поглощение SO2 влажной поверхностью слизистых оболочек и образованием в них кислот. Он нарушает белковый обмен и ферментативные процессы, вызывает раз­дражение глаз, кашель.

Диоксид углерода СО2. Он хорошо поглощается растениями с выделени­ем кислорода. Но при наличии в атмосфере земли значительного количества углекислого газа, поглощающего солнечные лучи, соз­дается парниковый эффект, приводящий к так называемому «теп­ловому загрязнению». Вследствие этого явления повыша­ется температура воздуха в нижних слоях атмосферы, происходит потепление, наблюдаются различные климатические аномалии. Кроме того, повышение содержания в атмосфере СО2 способствует образованию «озоновых» дыр. При снижении концентрации озона в атмосфере земли повышается от­рицательное воздействие жесткого ультрафиолетового излучения ни организм человека.

Пыль. Автомобиль является источником загрязнения воздуха также пылью. Во время езды, особенно при торможении, в результате трения покрышек о поверхность дороги образует­ся резиновая пыль, которая постоянно присутствует в воздухе на магистралях с интенсивным движением. Но покрышки не являются единственным источни­ком пыли. Твердые частицы в виде пыли выделяются с отработавшими газами, завозятся в город в виде грязи на кузовах автомобилей, образуются от истира­ния дорожного покрытия, поднимаются в воздух вихревыми потоками, возника­ющими при движении автомобиля, и т.д. Пыль отрицательно сказывается на здоровье человека, губительно действует на растительный мир.

  1. Основные направления снижения выбросов ДВС.

К улучшению экологических показателей автомобиля приводят:

• повышение его экономичности;

• замена бензиновых ДВС на дизельные;

• перевод ДВС на использование альтернативных топлив;

• применение нейтрализаторов отработавших газов ДВС;

• совершенствование режима работы ДВС и технического обслуживания автомобиля.

Методы снижения токсичности выхлопных газов:

  • работа автомобиля в условиях, когда двигатель выделяет наименьшее количество токсичных веществ (уменьшение торможения, равномерное движение с определенной скоростью и т. д.);

  • применение специальных присадок к топливу, увеличивающих полноту его сгорания и уменьшающих выброс СО (спирты, другие соединения);

  • пламенное дожигание некоторых вредных компонентов.

Специалисты считают, что для заметного снижения вредных выбросов необходимо сократить потребление бензина с 8 литров (на 100 км пробега) до 2…3 л. Это требует:

• совершенствование устройства двигателя и качества топлива;

• перехода на неэтилизированный бензин;

• применения каталитического дожига для уменьшения выброса СО;

• внедрения электронной системы управления процессов горения топлива;

• и другие меры, в частности применения глушителей шума в системе выхлопа.

  1. Очистка дизельных двигателей от сажи.

Отделение частиц. Доля выбросов от автомобилей в общей доле загрязнения воздуха составляет примерно 10%. Черный, белый и голубой дым от дизельного двигателя являются непосредственно заметными выбросами и, подобно запаху от выхлопных газов, видны как результат работы двигателя. Очистка выхлопных газов в дизельных двигателях призвана решить эти проблемы, посредством чего выброс частиц может быть уменьшен примерно на 75%. В общем, размер частиц, которые должны быть удалены, имеет решающее значение для практического применения возможных систем отделения. Частицы сажи, выбрасываемые дизельным двигателем, имеют размеры (судя по диаметру) от 0,01 до 10 мкм. Размер зерна в среднем лежит около 1 мкм (микрона). Для частиц такого размера могут быть использованы только фильтрация и электрические сепараторы.

Фильтр дожигания сажи. Дизельный двигатель постоянно работает с избытком воздуха. Это значит, что выхлопные газы содержат так много кислорода, что при температуре выше примерно 550°С, собирающаяся сажа сгорает самостоятельно в фильтре для дожигания сажи с эффектом самоочищения фильтра. Однако, локальные пиковые температуры, достигающие 1200°С при дожигании сажи требуют использования материалов с особыми свойствами. По этой причине для этой цели были специально разработаны керамические материалы фильтров различной конструкции. Следовательно, выхлопные газы, проходящие в открытый канал, могут протекать через пористые керамические стенки в расположенные рядом каналы, ведущие к выхлопной трубе.

Электрический сепаратор. Напряженность электрического поля так высока, что на концах или остриях одного из электродов электричеокого сепаратора начинается эмиссия электронов. В результате этого образуются свободные носители заряда, которые сами осаждаются на частицы, находящиеся в выхлопных газах. В электростатическом поле электрически заряженные частицы движутся к электроду с противоположной полярностью, где они и отделяются. Хотя электрический сепаратор в обычной форме неприменим для работы в автомобиле (размеры, трудность очистки), принцип его работы с помощью накопления приведет к существенному росту отделяемых частиц. Затем частицы могут быть отделены от потока выхлопных газов в обычном центробежном сепараторе. В отличие от фильтра дожигания сажи, утечки давления выхлопных газов в электрическом сепараторе не зависят от количества сажи и постоянны для соответствующего режима работы (отсутствует риск забивания).

Каталитический преобразователь (катализатор). Обеспечивает существенное уменьшение окиси углерода и углеводородов, выбрасываемых дизельным двигателем. Так как выбросы углеводородов вносят вклад в выброс частиц, то их можно также уменьшить с помощью катализатора.

  1. Основные источники загрязнения гидросферы. Виды загрязнения воды.

Загрязнение вод проявляется в изменении физических и органолептических свойств, увеличении содержания сульфатов, хлоридов, нитратов, токсичных тяжелых металлов, сокращении растворенного в воде кислорода, появлении радиоактивных элементов, болезнетворных бактерий и других загрязнителей.

Основными источниками загрязнения гидросферы являются:

· промышленные сточные воды;

· хозяйственно-бытовые сточные воды;

· дренажные воды с орошаемых земель;

· сельскохозяйственные поля и крупные животноводческие комплексы;

· водный транспорт.

Виды загрязнения воды:

Химическое загрязнение может быть органическим (фенолы, пестициды), неорганическим (соли, кислоты, щелочи), токсичным (ртуть, мышьяк, кадмий, свинец), нетоксичным.

Бактериальное загрязнение выражается в появлении в воде патогенных бактерий, вирусов, простейших, грибов и т.д.

Физическое загрязнение может быть радиоактивным, механическим, тепловым.

Очень опасно содержание в воде радиоактивных веществ даже в малых концентрациях. Радиоактивные элементы попадают в поверхностные водоемы при сбрасывании в них радиоактивных отходов, захоронении отходов и т.д. В подземные воды радиоактивные элементы попадают в результате их выпадения с осадками на поверхность земли и последующего просачивания вглубь земли, либо в результате взаимодействия подземных вод с радиоактивными горными породами.

Механическое загрязнение характеризуется попаданием в воду различных механических примесей (шлам, песок, ил и др.), которые могут значительно ухудшать органолептические показатели.

Тепловое загрязнение связано с повышением температуры природных вод в результате их смешивания с технологическими водами. Температура сточных вод ТЭС, АЭС выше температуры окружающих водоемов на 10 oC. При повышении температуры происходит изменение газового и химического состава в водах, что ведет к размножению анаэробных бактерий, выделению ядовитых газов – Н2S, СН4. Происходит цветение воды, ускоренное развитие микрофлоры и микрофауны.

  1. Классификация сточных вод.

А. По степени загрязнения и происхождению

    1. загрязненные; представляющие собой смесь отработанных жидко­стей после технологических процессов, а также после мытья оборудования и полов (75-80%);

    2. условно-чистые воды от охлаждения оборудования, компрессорных и холодильных установок, вентиляционных устройств и т.д. (6-18%);

    3. хозяйственно-фекальные (5-6%);

    4. ливневые воды от мытья территории, автотранспорта и т.д. (2-3%).

Б. По состоянию

    1. грубодисперсное (оседающем под действием силы тяжести),

    2. коллоидное,

    3. растворенное.

В. По характеру сброса

    1. неорганизованные, если они стекают в водный объект непосредственно с территории промышленного предпри­ятия, не оборудованного специальной, например, ливневой канализацией или иными устройствами для сбора

    2. организованные, если они отводятся через специально сооруженные источники - водовыпуски

  1. Загрязнители сточных вод.

Все загрязнители сточных вод подразделяются на три группы:

  1. биологические загрязнители: микроорганизмы – вирусы, бактерии; растения – водоросли; дрожжи, плесневые грибки;

  2. химические загрязнители: наиболее распространенными агрязнителями являются нефть и нефтепродукты, СПАВ, пестициды, тяжелые металлы, диоксины, фенолы, аммонийный и нитритный азот и др.;

  3. физические загрязнители: радиоактивные элементы, взвешенные твердые частицы, шлам, песок, ил, тепло и др.

Загрязняющие примеси могут быть органическими и минеральными, растворимыми и нерастворимыми, ядовитыми и неядовитыми.

  1. Оценка качества водных ресурсов.

Состав и свойства воды водотоков и водоёмов в местах хозяйственно-питьевого, коммунально-бытового и рыбохозяйственного водопользования оценивают физическими, химическими и санитарно-биологическими показателями. К физическим показателям относят температуру, содержание взвешенных веществ (мутность), окраска, запах, привкус и др. Химический состав воды характеризуют ионным составом, жёсткостью, щёлочностью, кисляемостью, активной концентрацией водородных ионов (pH), сухим остатком, общим солесодержанием, содержанием растворённого кислорода, свободной углекислоты, сероводорода, активного хлора и др. Основными санитарно-биологическими показателями качества воды являются коли-титр (коли-индекс), общее микробное число, наличие патогенных бактерий и вирусов.

Оценка качества водных ресурсов осуществляется с помощью системы основных показателей:

ПДКв – предельно допустимая концентрация загрязняющих веществ в воде водоёма, мг/дм3;

ПДКв.р – предельно допустимая концентрация загрязняющих веществ в воде водоёмов, используемых для рыбохозяйственных целей, мг/дм3;

ВДКв (ОБУВв) – временно допустимая концентрация (ориентировочно безопасный уровень воздействия) загрязняющих веществ в воде водоёмов, мг/дм3. Нормативы устанавливаются расчётным путём на срок три года.

ПДС – предельно-допустимый сброс, г/ч (кг/сут.). Регламентирует массу загрязняющего вещества в сточных водах, сбрасываемых в водоём. Определяется расчётным путём на период, установленный соответствующими органами.

БПК (биохимическая потребность в кислороде) – количество кислорода, используемого при биохимических процессах окисления органических веществ (не включая нитрификации) за определённое время инкубации пробы (2, 5, 10 или 20 суток), в миллиграммах О2 на миллиграмм вещества.

ХПК (химическая потребность в кислороде, определённая бихроматным методом) – количество кислорода, эквивалентное количеству расходуемого окислителя, необходимого для окисления всех восстановителей, содержащихся в воде, в миллиграммах О2 на миллиграмм вещества.

ППК (МНК) – подпороговая концентрация (максимальная недействующая концентрация) химического вещества при поступлении в организм с водой, мг/дм3.

ППД (МНД) – подпороговая доза (максимальная недействующая доза) химического вещества при поступлении в организм с водой, мг/дм3.

В зависимости о величин гидробиологических и микробиологических показателей выделяют шесть классов качества воды:

I – очень чистые;

II – чистые;

III – умеренно загрязненные;

IV – загрязненные;

V – грязные;

VI класс – очень грязные.

  1. Какие существуют показатели загрязненности сточных вод?

Состав природных вод оценивается физическими, химическими и санитарно-бактериологическими показателями.

Физические показатели:

· температура;

· цветность – показатель, обусловленный наличием в воде гуминовых кислот, присутствием соединений железа;

· запахи и привкусы – органолептические показатели качества воды.

Запахи вызывают летучие пахнущие вещества. Мутность обусловлена присутствием нерастворенных и коллоидных веществ неорганического (глина, песок) и органического (ил, нефтепродукты, микроорганизмы) происхождения.

Химические показатели:

· ионный состав – общее солесодержание природных вод определяется в большинстве случаев катионами Na+, K+, Ca2+, Mg2+ и анионами SO4 2–,

HCO3–, Cl–,

· содержание железа и марганца,

· щелочность,

· жесткость,

· рН среды; вода хозяйственно-питьевого назначения имеет рН = 6,5–8,5,

· содержание растворенных газов О2, СО2, Н2S и др.

Санитарно-биологические показатели:

· коли-индекс – число бактерий Е.Coli в 1 л воды (≤3);

· коли-титр – наименьший объем воды (в мл), содержащий 1 кишечную палочку;

· микробное число – общее число аэробных сапрофитов, служит для оценки загрязненности органическими веществами.

  1. Основные методы очистки сточных вод.