
- •И устройство судна
- •Содержание
- •Глава 1 Мореходные и эксплуатационные качества судна
- •Глава 2 Основы гидромеханики
- •§2.1. Основные свойства жидкостей
- •§2.2. Гидростатика
- •§2.3. Гидродинамика
- •§2.4. Теория подобия в гидромеханике
- •§2.5. Основы теории крыла
- •Глава 3 Геометрия корпуса судна § 3.1. Теоретический чертеж
- •§ 3.2. Главные размерения судна и коэффициенты полноты
- •§ 3.3. Посадка судна
- •§ 3.4. Элементы погруженного объема судна при посадке его прямо и на ровный киль
- •Абсцисса цв:
- •3.4.5. Понятие о правилах приближенного интегрирования.
- •§ 3.5. Элементы погруженного объема судна при посадке его прямо, но с дифферентом
- •Глава 4 Плавучесть судна
- •§ 4.1. Условие плавучести судна
- •§ 4.2. Вычисление массы и координат центра тяжести судна
- •§ 4.3. Изменение осадки при переходе судна в воду с иной плотностью
- •§ 4.4. Изменение осадки судна при приеме или расходование грузов
- •§ 4.5. Запас плавучести судна
- •Глава 5 Начальная остойчивость судна
- •§ 5.1. Общее понятие об остойчивости
- •§ 5.2. Равнообъемные наклонения судна. Теорема Эйлера
- •§ 5.3. Метацентры и метацентрические радиусы
- •Как видно из рис. 36, при малом угле θ
- •Аппликатапоперечного метацентра:
- •Так как площадь ватерлинии вытянута в продольном направлении, то Jyf намного превышаетJx и соответственноRзначительно большеr. ВеличинаRсоставляет 12 длины судна.
- •§ 5.4. Условие начальной остойчивости судна. Метацентрические высоты
- •§ 5.5. Метацентрические формулы остойчивости и их практическое применение
- •§ 5.6. Остойчивость формы и остойчивость нагрузки
- •§ 5.7. Определение мер начальной остойчивости судна
- •§ 5.8. Влияние перемещения грузов на посадку и остойчивость судна
- •§ 5.9. Влияние приема малого груза на посадку и остойчивость судна
- •§ 5.10. Влияние жидкого груза на остойчивость судна
- •Как видно из формулы, именноix оказывает влияние на остойчивость.
- •§ 5.11. Опытное определение метацентрической высоты и положения центра тяжести судна
- •Глава 6 Остойчивость судна на больших углах наклонения
- •§ 6.1. Плечо статической остойчивости на больших углах крена
- •§ 6.2. Диаграмма статической остойчивости
- •6.2.1. Определение мер начальной остойчивости с помощью дсо.
- •§ 6.3. Динамическая остойчивость судна
- •§ 6.4. Влияние условий плавания на остойчивость судна
- •Глава 7 Практическое применение теории плавучести и остойчивости
- •§ 7.1. Определение массы груза, обеспечивающего заданный угол крена
- •§ 7.2. Расчеты по снятию судна с мели
- •7.2.2. Определение реакции грунта и точки ее приложения.
- •Глава 8 Нормирование и контроль остойчивости судов
- •§ 8.1. Нормирование остойчивости морских промысловых судов
- •§ 8.2. Информация об остойчивости судна
- •Глава 9 Непотопляемость судна
- •§ 9.1. Общее понятие о непотопляемости
- •§ 9.2. Принципы обеспечения непотопляемости
- •§ 9.3. Методы расчета непотопляемости
- •§ 9.4. Классификация затопленных отсеков
- •§ 9.5. Спрямление поврежденного судна
- •9.5.2. Задачи и методы спрямления поврежденного судна.
- •§ 9.6. Нормирование непотопляемости промысловых судов
- •Глава 10 Сопротивление воды движению судна
- •§ 10.1. Общие сведения
- •§ 10.2. Составляющие сопротивления движению судна
- •§ 10.3. Сопротивление трения
- •§ 10.4. Сопротивление формы
- •§ 10.5. Волновое сопротивление
- •§ 10.6. Сопротивление выступающих частей
- •§ 10.7. Воздушное сопротивление
- •§ 10.8. Влияние эксплуатационных факторов на ходкость судна
- •Глава 11 Судовые движители
- •§ 11.1. Общие сведения о судовых движителях
- •§ 11.2. Геометрические характеристики гребного винта
- •§ 11.3. Кинематические характеристики гребного винта
- •§ 11.4. Гидродинамические характеристики гребного винта
- •§ 11.5. Работа гребного винта на разных режимах
- •§ 11.6. Диаграммы для расчета гребных винтов
- •§ 11.7. Взаимодействие гребного винта и корпуса судна. Пропульсивный коэффициент
- •§ 11.8. Кавитация гребных винтов
- •§ 11.9. Взаимосвязь между работой гребного винта и двигателем
- •§ 11.10. Винты регулируемого шага
- •§ 11.11. Паспортная диаграмма судна оборудованного винтом фиксированного шага
- •Список литературы
Глава 3 Геометрия корпуса судна § 3.1. Теоретический чертеж
Ввиду сложности формы обводы корпуса задаются графически в виде теоретического чертежа. На теоретическом чертеже изображены проекции на главные взаимно перпендикулярные плоскости линии пересечения теоретической поверхности корпуса с плоскостями, параллельными главным плоскостям. Под теоретической поверхностью понимают внутреннюю поверхность обшивки корпуса (без учета толщины обшивки и выступающих частей). Исключения составляют суда с деревянными и пластмассовыми корпусами, для которых на теоретическом чертеже изображают наружную поверхность корпуса.
В качестве главных плоскостей принимают:
- диаметральную плоскость (ДП) - вертикальную продольную плоскость, делящую корпус судна на две симметричные части - правую (правый борт) и левую (левый борт);
-
плоскость
мидель шпангоута ()
- вертикальную поперечную плоскость,
проходящую по середине длины судна и
делящую корпус на носовую и кормовую
части;
- основную плоскость (ОП) - горизонтальную плоскость, проходящую через нижнюю точку теоретической поверхности корпуса судна в плоскости мидель-шпангоута.
Линии пересечения теоретической поверхности корпуса с плоскостями параллельным ДП называют батоксами, с плоскостями параллельными ОП - теоретическими ватерлиниями (ВЛ), с плоскостями, параллельными плоскости мидель–шпангоута - теоретическими шпангоутами.
Линии пересечения ОП с ДП и ОП с плоскостью мидель-шпангоута дают продольную и поперечную основные линии.
Пересечение ДП с корпусом образуют линию киля, форштевня, ахтерштевня и верхней палубы.
Совокупность
проекций батоксов, теоретических
ватерлиний и шпангоутов на ДП называетсябоком,
на ОП - полуширотой,
на плоскость мидель - шпангоута - корпусом.
Эти три вида и составляют теоретический
чертеж судна (рис. 9).
Рис.9. Теоретический чертеж судна
Каждое сечение проектируется на одну из плоскостей в своем истинном виде, а на две другие в виде прямых линий. Например, на виде «бок» в истинном виде представлены батоксы, а теоретические шпангоуты и ватерлинии в виде прямых. Из последних выделяют
конструктивную ватерлинию (КВЛ), по которую судно плавает с полной нагрузкой по проектную осадку. Любая другая ватерлиния, соответствующая конкретному случаю нагрузки называется действующей (расчетной) и обозначается (WL).
Число теоретических шпангоутов, как правило, принимается равными 11 или 21, которые образуют соответственно 10 или 20 теоретических шпаций.
Линии
пересечения диаметральной плоскости
с вертикальными поперечными плоскостями,
проходящими через крайнюю носовую точку
КВЛ и точку ее пересечения с осью баллера,
называется соответственноносовым
(НП) и кормовым
(КП) перпендикулярами.
При отсутствии баллера кормовой
перпендикуляр получают, проводя
вертикальную поперечную плоскость на
расстоянии 97% длины судна по КВЛ от
носового перпендикуляра.
Рис.10. Главные плоскости теоретического чертежа
Для расчета статики судна используют прямоугольную систему координат oxyz (рис. 10). Координатные плоскости системы oxyz совпадают с диаметральной плоскостью (ДП) xoz, плоскостью мидель - шпангоута yoz и основной плоскостью xoy. Начало координат располагают в точке 0, а оси направляют соответственно в нос, на правый борт и вертикально вверх.
Теоретический чертеж предназначен для наглядного изображения обводов корпуса, расчетного определения характеристик эксплуатационных качеств судна, разработки проектных чертежей.
Расчеты мореходных качеств судна в условиях его эксплуатации проводятся по документации, в которой используются данные, полученные из теоретического чертежа. Теоретический чертеж применяется при проведении ремонтных работ по корпусу, при доковании судна.