Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fiziologia.docx
Скачиваний:
208
Добавлен:
08.02.2016
Размер:
791.61 Кб
Скачать

Общее строение нервной системы человека

Нервная система

Центральная нервная система(ЦНС)

↓ ↓

Спинной мозг Головной мозг

Нервная система

Периферическая нервная система

↓ ↓ ↓

Нервы Нервные окончания нервные узлы

Основные функции нервной системы – получение, хранение и переработка информации из внешней и внутренней среды, регуляция и координация деятельности всех органов и органных систем. Нервная система является объединяющей и координирующей системой организма. Нервы проникают во все органы и ткани, образуют многочисленные разветвления, имеющие рецепторные (чувствительные) и эффекторные (двигательные, секреторные) окончания, и вместе с центральными отделами (головной и спинной мозг) обеспечивают объединение всех частей организма в единое целое. Нервная система регулирует функции движения, пищеварения, дыхания, выделения, кровообращения, лимфоотток, иммунные (защитные) и метаболические процессы (обмен веществ) и др. Деятельность нервной системы, по словам И. М. Сеченова, носит рефлекторный характер. Рефлекс (лат. reflexus — отраженный) — это ответная реакция организма на то или иное раздражение (внешнее или внутреннее воздействие), которая происходит при участии центральной нервной системы (ЦНС). Человеческий организм, обитающий в окружающей его внешней среде, взаимодействует с ней. Среда влияет на организм, и организм в свою очередь соответствующим образом реагирует на эти влияния. Протекающие в самом организме процессы также вызывают ответную реакцию. Таким образом, нервная система обеспечивает взаимосвязь и единство организма и среды.

16 Развитие центральной нервной системы в процессе онтогенеза.

Наиболее важным и характерным показателем развития различных периодов детского возраста является становление центральной нервной системы. Вслед за совершенствованием функций анализаторов идет развитие сложной, присущей только человеку психической и психомоторной деятельности. При этом особенно выраженные изменения происходят на протяжении первого года жизни, когда каждый месяц сопровождается качественно новыми, ощутимыми показателями развития, позволяющими достаточно точно и объективно дифференцировать эти небольшие этапы жизни, что невозможно осуществить ни в каких других возрастных периодах. Так, появление первой улыбки в ответ на разговор взрослых происходит в возрасте 1 мес., в 4 мес. ребенок устойчиво встает на ножки при посторонней поддержке, появление лепета (произнесение отдельных слогов) - в 6 мес., реагирование на элементарные вопросы с указыванием при этом на предметы, о которых спрашивают, - 9 мес.; самостоятельная устойчивая опора на ножки - в 11 мес. и т.д. Большая медицинская энциклопедия. Гл. Ред. Б.В. Петровский. Изд. 3-е т. 4 - М., 1976. .

С возрастом постепенно (первые простые осмысленные слова в 11 мес) развивается разговорная речь; к 3 годам речевой запас достигает 1200 - 1500 слов, ребенок начинает понимать смысл речи о событиях, не связанных с его личным опытом, говорит сложными фразами.

Характерным показателем возрастной динамики ребенка первого года жизни является исчезновение у него специфических рефлексов, так называемых рефлексов обратного развития (примитивных, физиологических рефлексов новорожденных). Они обусловлены деятельностью преимущественно таламо-паллидарной системы ввиду незрелости коры головного мозга и по мере созревания последней подвергаются обратному развитию. Каждый из рефлексов (Робинсона, Моро, Магнуса - Клейна, поисковый, ладонно-ротовой, "заходящего солнца", "кукольных глаз", хоботковый, плавания, ползания, автоматической ходьбы и др.) исчезает в определенные возрастные интервалы, и к концу первого года жизни ребенок приобретает неврологический статус, ужо практически идентичный взрослому.

В дошкольном возрасте происходит дальнейшее усложнение и дифференцировка психического развития. Более выражено влияние тормозных процессов. Ребенок активно воспринимает окружающий мир, усваивает моральные понятия и представления об обязанностях, проявляет большой интерес к детям. Многие дети начинают читать и писать, легко овладевают элементами иностранного языка.

В школьном периоде продолжается развитие сложных форм поведения, формируются индивидуальные особенности. У подростков все больше выявляются особенности поведения, связанные с гормональной перестройкой. Мышление отличается склонностью к абстрагированию и обобщению.

В возрастные периоды детства закономерно, с достаточно определенными количественными показателями изменяются функциональные характеристики различных органов и систем (например, частота и глубина дыхания, пульс, артериальное давление, электрическая активность мозга и др.), отмечаются сдвиги в количественных показателях ряда биохимических величин крови, (остаточного азота, мочевой кислоты, аминокислот и белков, сахара, ферментов, липидов, мукополисахаридов, гормонов и др.) и выделения этих веществ с мочой.

С возрастом изменяются потребности ребенка в пище. Потребность в белке ввиду интенсивного роста значительно выше, чем у взрослых. Так, до 3 лет ребенку необходимо 2-4,0 г, а взрослым 1,1-1,3 гбелка на 1 кг веса тела. Потребность в раннем возрасте в углеводах составляет 12-14 г, а у детей более старшего возраста - 10-12 г на 1 кг веса тела. Повышена интенсивность углеводного обмена (у новорожденных преобладает гликолитический путь обмена глюкозы).

17.Развитие НС в онтогенезе.

Нервная система и органы чувств развиваются у позвоночных животных и человека из наружного зародышевого листка (эктодермы), на спинной поверхности которого образуется нервная пластинка. На ранней стадии онтогенеза клетки эктодермы и клетки нервной пластинки имеют сходное строение. Постепенно нервная пластинка превращается в нервную трубку, имеющую одинаковую толщину на всем протяжении, а затем в ней появляется расширение — зачаток головного мозга. Вначале развивается спинной мозг. Сначала растущие двигательные нервы состоят из голых осевых цилиндров, а потом развиваются миелиновые оболочки (миелинизация).  человека миелинизация всех спинномозговых нервов заканчивается к 3-5 годам, иногда к 10. Образование спинномозговых узлов, или ганглиев, происходит во время формирования нервной трубки. Рефлекторные пути развиваются у зародыша человека в 7,5-8 недель, когда появляются местные двигательные рефлексы сгибания шеи и верхней части туловища на противоположной стороне тела, при раздражении губ и крыльев носа. В 8,5-9,5 педель при таком же раздражении к этим движениям присоединяются движения большей части туловища и рук. По мере развития зародыша увеличивается число участков кожи, с которых вызываются двигательные рефлексы, и возрастает количество мышц, участвующих в этих рефлексах. Следовательно, усложняется строение рефлекторных колец. После рождения как центральная, так и периферическая нервная система претерпевает ряд изменений. Так, спинной мозг новорожденного имеет ряд особенностей, отличающих его от спинного мозга взрослого. Это относится к его положению в позвоночном канале, длине, ширине, массе, величине отдельных сегментов, развитию щелей и борозд, положению корешков спинномозговых нервов. Имеются некоторые особенности в строении белого и серого вещества спинного мозга. Нижней границей спинного мозга является у новорожденного III поясничный позвонок (у взрослого — I или верхний край II поясничного позвонка). Масса спинного мозга при рождении составляет 3 — 4 г, к 6 мес почти удваивается, к году — утраивается, к 6 годам достигает 16 г и к 20 годам равна массе спинного мозга взрослого. Длина спинного мозга новорожденного до 15 см, к 10 годам она почти удваивается. Шейное и пояснично-крестцовое утолщения, которые организуются на III месяце внутриутробной жизни одновременно с развитием конечностей, хорошо выражены. Различные участки спинного мозга в процессе роста развиваются неодинаково: больше всего увеличивается грудной отдел, затем шейный и только потом поясничный. После 6 лет спинной мозг растет в поперечном диаметре. Ряд борозд, появляющихся на спинном мозге новорожденного, углубляясь, остается на всю жизнь, некоторые борозды после рождения исчезают. Особенности головного мозга новорожденного обусловлены недостаточным развитием и слабой дифференцировкой нервной системы. Кора больших полушарий имеет все основные борозды и извилины, однако все они недостаточно резко ограничены: борозды неглубокие, извилистость очень слабая. Имеются указания, что борозды и извилины второго и главным образом третьего порядка развиваются после рождения, особенно интенсивно в течение первого года жизни, а те, которые были у новорожденного, углубляются, становятся более резко выраженными. У новорожденного по сравнению со взрослым затылочная доля больших полушарий имеет относительно большие размеры. Масса мозга у новорожденного 380 — 400 г, т. е. составляет в среднем 1/8 массы тела. К концу первого года жизни удваивается и составляет 1/11—1/12 массы тела, к 3 годам утраивается, к 5 годам составляет 1/13—1/14 массы тела, к 20 годам увеличивается в 4—5 раз. У взрослого человека масса мозга равна 1/40 массы тела.

18. Возрастные изменения структуры нейрона и нервного волокна.

На ранних стадиях эмбрионального развития нейрон, как правило, состоит из тела, имеющего два недифференцированных и неветвящихся отростка. Тело содержит крупное ядро, окруженное небольшим слоем цитоплазмы. Процесс созревания нейронов характеризуется быстрым увеличением цитоплазмы, увеличением в ней числа рибосом и формированием аппарата Гольджи, интенсивным ростом аксонов и дендритов. Различные типы нервных клеток созревают в онтогенезе гетерохронно. Наиболее рано (в эмбриональном периоде) созревают крупные афферентные и эфферентные нейроны. Созревание мелких клеток происходит после рож­дения (в постнатальном онтогенезе) под влиянием средовых факторов, что создает предпосылки для пластических перестроек -в ЦНС. Отдельные части нейрона тоже созревают неравномерно. Наиболее поздно формируется дендритный шипиковый аппарат, развитие которого в постнатальном периоде в значительной мере обеспечивается притоком внешней информации.      Покрывающая аксоны миелиновая оболочка интенсивно растет в постнатальном периоде, ее рост ведет к повышению скорости проведения по нервному волокну. Миелинизация раньше всего отмечена у периферических нервов, затем ей подвергаются волокна спинного мозга, стволовой части головного мозга, мозжечка и позже волокна больших полушарий головного мозга. Двигательные нервные волокна покрываются миелиновой оболочкой уже к момент рождения, чувствительные (например, зрительные) в течение первых месяцев жизни ребенка. К трехлетнему возрасту в основном завершается миелинизация нервных волокон, хотя рост миелиновой оболочки и осевого цилиндра продолжается и после трехлетнего возраста.

19. Рефлекс как основная форма нервной деятельности.Рефлекс – ответная реакция организма на раздражение из внешней или внутренней среды, осуществляемая при помощи центральной нервной системы. (Запись в опорный конспект).Раздражение кожи подошвенной части ноги у человека вызывает рефлекторное сгибание стопы и пальцев. Это подошвенный рефлекс. При ударе по сухожилию четырехглавой мышцы бедра под наколенником разгибается нога в колене. Это коленный рефлекс. Путь, по которому проводятся нервные импульсы при осуществлении рефлекса, называется Рефлекторная дуга.  Во всех органах тела располагаются нервные окончания, чувствительные к раздражителям. Это рецепторы. Рецепторы различны по строению, местоположению, функциям. Некоторые рецепторы имеют вид сравнительно просто устроенных нервных окончаний, либо они являются отдельными элементами сложно устроенных органов чувств, как, например, сетчатка глаза. В рецепторах при действии соответствующих раздражителей определённой силы и времени действия возникает процесс возбуждения. Возникшее возбуждение из рецепторов передаётся в ЦНС по чувствительным нервным волокнам. В ЦНС происходит обработка поступивших сигналов и передача импульсов на двигательные нервные волокна. Исполнительный орган, деятельность которого изменяется в результате рефлекса, называют эффектором. Классификации рефлексов. Существуют различные классификации рефлексов: по способам их вызывания, особенностям рецепторов, центральным нервным структурам их обеспечения, биологическому значению, сложности нейронной структуры рефлекторной дуги и т. д. В зависимости от происхождения различают безусловные рефлексы (категория рефлекторных реакций, передаваемых по наследству) и условные рефлексы (рефлекторные реакции, приобретаемые на протяжении индивидуальной жизни организма). Различают экстероцептивные рефлексы — это рефлекторные реакции, инициируемые раздражением многочисленных экстерорецепторов (болевые, температурные, тактильные и т. д.). Интероцептивные рефлексы - это рефлекторные реакции, запускаемые раздражением интероцепторов: хемо-, баро -, осморецепторов и др. Проприоцептивные рефлексы – это рефлекторные реакции, осуществляемые в ответ на раздражение проприорецепторов мышц, сухожилий, суставных поверхностей и т. д. В зависимости от уровня активации части мозга дифференцируют спинномозговые, бульварные, мезенцефальные, диэнцефальные и кортикальные рефлексы. По биологическому назначению рефлексы делят на пищевые, оборонительные, половые и т. д. В рефлекторной дуге выделяют следующие компоненты: 1. Рецепторы — высокоспециализированные образования, способные воспринять энергию раздражителя и трансформировать её в нервные импульсы. Различают первичночувствующие рецепторы, которые представляют собой немиелинизированные окончания дендрита чувствительного нейрона, и вторичночувствующие: специализированные эпителиоидные клетки, контактирующие с сенсорным нейроном. Все рецепторы можно подразделить на внешние или экстерорецепторы (зрительные, слуховые, вкусовые, обонятельные, осязательные) и внутренние или интерорецепторы (рецепторы внутренних органов), среди которых полезно выделить проприоцепторы, находящиеся в мышцах, сухожилиях и суставных сумках. Область, занимаемая рецепторами, которые принадлежат одному афферентному нерву (нейрону) называется рецептивным полем этого нерва (нейрона). Действие порогового раздражителя на рецептивное поле приводит к возникновению специализированного рефлекса. 2. Сенсорные (афферентные, центростремительные) нейроны, проводящие нервные импульсы от своих дендритов в центральную нервную систему. В спинной мозг сенсорные волокна входят в составе задних корешков. З. Интернейроны (вставочные, контактные) находятся в центральной нервной системе, получают информацию от сенсорных нейронов, перерабатывают её и передают эфферентным нейронам. В спин ном мозгу тела вставочных нейронов находятся преимущественно в задних рогах и промежуточной области. 4. Эфферентные (центробежные) нейроны получают информацию от интернейронов (в исключительных случаях от сенсорных нейронов) и передают рабочим органам. Тела эфферентных нейронов расположены в центральной нервной системе, а их аксоны выходят из спинного мозга в составе передних корешков и относятся уже к периферической нервной системе: они направляются либо к мышцам, либо к внешнесекреторным железам. Управляющие скелетными мышцами двигательные нейроны спинного мозга (мотонейроны) находятся в передних рогах, а вегетативные нейроны — в боковых рогах. Для обеспечения соматических рефлексов достаточно одного эфферентного нейрона, а для осуществления вегетативных рефлексов необходимо два: один из них располагается в центральной нервной системе, а тело другого находится в вегетативном ганглии. 5. Рабочие органы или эффекторы представляют собой либо мышцы, либо железы, поэтому рефлекторные ответы, в конечном счёте сводятся или к мышечным сокращениям (скелетных мышц, гладких мышц сосудов и внутренних органов, сердечной мышцы), или к выделению секретов желёз (пищеварительных, потовых, бронхиальных, но не желёз внутренней секреции).

20. Возбуждение и торможение в ЦНС. Функционирование условно рефлекторного механизма базируется на двух основных нервных процессах: возбуждения и торможения. Достаточно сильное раздражение органа приводит его в активное деятельное состояние - возбуждение.

Возбуждение - свойство живых организмов, активный ответ возбудимой ткани на раздражение. Основная функция нервной системы, направленная на реализацию того или иного способа активации организма. Оно проявляется в мгновенных и существенных сдвигах в процессах обмена веществ, то есть может происходить только в живых клетках. Первый и притом обязательный признак возникшего возбуждения - электрическая реакция на результат изменений электрического заряда поверхностной мембраны клеток. Затем наступает специфическая для каждого органа реакция, чаще всего выражающаяся во внешней работе: мышца сокращается, железа выделяет сок, в нервной клетке возникает импульс.

Возбудимость, то есть способность в ответ на раздражение приходить в состояние возбуждения, - одно из основных свойств живой клетки. Исчезновение возбудимости означает прекращение рабочих функций, а в конечном счете, и жизни.

Вызвать состояние возбуждения можно различными раздражителями, например механическими (укол булавкой, удар), химическими (кислота, щелочь), электрическими. Наименьшая сила раздражения, достаточная для того, чтобы вызвать минимальное возбуждение, называется порогом раздражения.

По мере укрепления условного рефлекса происходит усиление тормозного процесса.

Торможение - активный, неразрывно связанный с возбуждением процесс, приводящий к задержке деятельности нервных центров или рабочих органов. В первом случае торможение называется центральным, во втором -периферическим.

В зависимости от природы физиологического механизма, лежащего в основе тормозного эффекта на условнорефлекторную деятельность организма, различают безусловное (внешнее и запредельное) и условное (внутреннее) торможение условных рефлексов.

Торможение безусловное - разновидность коркового торможения. В отличие от условного торможения наступает без предварительной выработки. Включает в себя: 1) индукционное (внешнее) торможение; 2) запредельное (охранительное) торможение.

Внешнее торможение условного рефлекса возникает под действием другого постороннего условного или безусловного раздражителя. Когда под влиянием какого-нибудь изменения внешней или внутренней среды в коре больших полушарий возникает достаточно сильный очаг возбуждения, то вследствие отрицательной индукции, возбудимость других ее пунктов оказывается пониженной - в той или иной степени в них развивается тормозное состояние.

Индукционное (внешнее) торможение - экстренное прекращение условнорефлекторной деятельности под воздействием посторонних стимулов, биологическое значение его - преимущественное обеспечение ориентировочной реакции на неожиданно возникший раздражитель.

Торможение, развивающееся в корковой клетке под влиянием длительного или сверхсильного раздражения, Павлов назвал запредельным.

Запредельное (охранительное) торможение - торможение, возникающее при действии стимулов, возбуждающих соответствующие корковые структуры выше присущего им предела работоспособности, и обеспечивающее тем самым реальную возможность ее сохранения или восстановления.

Как индукционное, так и запредельное торможение свойственно не только коре больших полушарий, но и всем другим отделам нервной системы. Существует, однако, вид торможения, встречающийся только в высшем отделе головного мозга.

Такое специфическое корковое торможение Павлов назвал условным или внутренним.

Условное (внутреннее) торможение условного рефлекса носит условный характер и требует специальной выработки. Биологический смысл его в том, что изменившиеся условия внешней среды требуют соответствующего адаптивного приспособительного изменения в условнорефлекторном поведении.

21.Строение и функции спинного мозга Спинной мозг является частью центральной нервной системы, которая связана с периферией тела – кожей, мышцами и некоторыми другими внутренними органами. Эти связи осуществляются у человека посредством 31-33 пар нервов, отходящих от спинного мозга, который соответственно делится на 31-32 отрезка (сегмента) Каждый из этих сегментов иннервирует определенный участок тела.

Существует 8 шейных сегментов, 12 грудных, 5 поясничных, 5 крестцовых и 1-3 копчиковых. В спинной мозг поступает информация с периферии, а от спинного мозга к мышцам идут распоряжения совершать те или иные движения.

Центральная часть спинного мозга состоит из серого вещества, которое на поперечном разрезе напоминает бабочку с развернутыми крыльями. Серое вещество спинного мозга представляет собой концентрацию огромного количества нервных клеток - нейронов. В каждом сегменте десятки или сотни тысяч нейронов, а всего в спинном мозгу человека их более тринадцати миллионов.

Серое вещество мозга окружено белым веществом, состоящим из нервных волокон - отростков нейронов. Несмотря на то, что нейроны очень малы и обычно не превышают в диаметре 0,1 миллиметра, длина их отростков порой доходит до полутора метров.

«Бабочка» серого вещества состоит из различных клеток. В передних ее отделах располагаются крупные двигательные клетки, длинные волокна, выходящие из спинного мозга и идущие к мышцам. Выходя из спинного мозга, эти волокна собираются в пучки, которые называются передними корешками. Из каждого сегмента выходит одна пара передних корешков: один - направо, другой - налево. Чувствительные волокна, входящие в каждый сегмент, образуют пару задних корешков.

В спинном мозгу часть чувствительных волокон направляется вверх, в головной мозг. Другая часть входит в серое вещество; здесь чувствительные волокна оканчиваются или на двигательных клетках, или на мелких промежуточных, или вставочных, клетках, которые играют очень большую роль в работе спинного мозга.

Раздражение чувствительных нервных окончаний кожи, мышц, суставов, сухожилий вызывает распространяющийся по нервному волокну сигнал - нервный импульс. Импульсы, приходящие в спинной мозг по чувствительным волокнам задних корешков, возбуждают вставочные и двигательные клетки; отсюда по двигательным волокнам передних корешков импульсы бегут к мышцам и вызывают их сокращение. Так осуществляются простые рефлексы. Рефлексами (от латинского слова reflexio - отражение) физиологи назвали реакции организма на раздражения, осуществляемые через центральную нервную систему.

Следовательно, одна из основных функций спинного мозга - рефлекторная. Путь, по которому идут нервные импульсы от периферии в спинной мозг и от него - к мышцам, называют рефлекторной дугой. Есть ряд рефлексов, у которых дуги отлично изучены. Полученные данные невропатологии используют в практике. Например, когда врач ударяет молоточком по сухожилию около коленной чашечки пациента, он, изучая сухожильный коленный рефлекс, судит о функциональном состоянии обусловленного участка спинного мозга.

Сложные координированные движения организует и направляет вся центральная нервная система. Тончайшие движения рук пианиста, отточенные па балерины - все это результат действия потока импульсов от головного мозга в спинной, а от него - к мышцам. Итак, другая важнейшая функция спинного мозга – проводниковая.

Большая роль в этом принадлежит промежуточным, или вставочным, нейронам. Они не только передают сигналы с чувствительных нейронов на двигательные. Вставочные клетки принимают и перерабатывают информацию от различных мышц и участков кожи. На них сигналы с периферии встречаются также с импульсами из головного мозга. Вставочные клетки посылают возбуждающие сигналы к определенным группам двигательных клеток и одновременно тормозят активность других групп. Благодаря этому и становится возможной тончайшая координация движений человека.

22 Строение и функции головного мозга. Головной мозг - часть центральной нервной системы; главный регулятор всех жизненных функций организма. В результате поражения головного мозга возникают тяжелые заболевания. В головном мозге содержится 25 миллиардов нейронов, составляющих серое вещество мозга. Головной мозг покрывают три оболочки - твердая, мягкая и находящаяся между ними паутинная, по каналам которой циркулирует спинномозговая жидкость (ликвор). Ликвор - своеобразный гидравлический амортизатор ударов. Мозг взрослого мужчины весит в среднем 1375 г; масса мозга женщины - 1245 г. Однако это не означает, что мозг мужчин лучше развит. Иногда вес мозга может достигать 1800 г. Головной мозг состоит из 5 основных отделов: конечного мозга, промежуточного, среднего, заднего и продолговатого мозга. Конечный мозг составляет 80% всей массы головного мозга. Он протянулся от лобной кости до затылочной. Конечный мозг состоит из двух полушарий, в которых много борозд и извилин. Он делится на несколько долей (лобную, теменную, височную и затылочную). Различают подкорку и кору больших полушарий. Подкорка состоит из подкорковых ядер, регулирующих различные функции организма. Головной мозг располагается в трех черепных ямках. Большие полушария занимают переднюю и среднюю ямки, а заднюю ямку - мозжечок, под которым расположен продолговатый мозг. летки мозга включают нейроны (клетки, генерирующие и передающие нервные импульсы) и глиальные клетки, выполняющие важные дополнительные функции. (Можно считать, что нейроны являются паренхимой мозга, а глиальные клетки стромой). Нейроны делятся на возбуждающие (то есть активирующие разряды других нейронов) и тормозные (препятствующие возбуждению других нейронов).

Коммуникация между нейронами происходит посредством синаптической передачи. Каждый нейрон имеет длинный отросток, называемый аксоном, по которому он передает импульсы другим нейронам. Аксон разветвляется и в месте контакта с другими нейронами образует синапсы — на теле нейронов и дендритах (коротких отростках). Значительно реже встречаются аксо-аксональные и дендро-дендритические синапсы. Таким образом, один нейрон принимает сигналы от многих нейронов и в свою очередь посылает импульсы ко многим другим.

Основные отделы головного мозга человека

Ромбовидный (задний) мозг

продолговатый мозг

задний(собственно задний)

мост(содержит главным образом проекционные нервные волокна и группы нейронов, является промежуточным звеном контроля мозжечка)

мозжечок(состоит из червя и полушарий, на поверхности мозжечка нервные клетки образуют кору)

Полостью ромбовидного мозга является IV желудочек(на дне его имеются отверстия, которые соединяют его с другими тремя желудочками мозга, а также с субарахноидальным пространством).

средний мозг

четверохолмие

полость среднего мозга — водопровод мозга (Сильвиев водопровод)

ножки мозга

передний мозгсостоит изпромежуточногоиконечного мозга.

промежуточный (через этот отдел происходит переключение всей информации, которая идет из низлежащих отделов мозга в большие полушария). Полостью промежуточного мозга является III желудочек.

таламус

эпиталамус

эпифиз

поводок

серая полоска

гипоталамус(центр вегетативной нервной системы)

гипофиз

воронка гипофиза

серый бугор

сосцевидные тела

конечный

плащ (кора)

базальные ядра(стриатум)

хвостатое ядро

чечевицеобразное ядро

ограда

миндалевидное тело

«обонятельный мозг»

обонятельная луковица (проходит обонятельный нерв)

обонятельный тракт

полость конечного мозга — боковые (I и II желудочки)

По мнению большинства учёных, функции мозга включают обработку сенсорной информации, поступающей от органов чувств, планирование,принятие решений,координацию,управление движениями, положительные и отрицательныеэмоции,внимание,память. Мозг человека выполняет высшую функцию —мышление. Одной из функций мозга человека является восприятие и генерацияречи.

23. Головной мозг является важнейшим отделом ЦНС, в нем различают стволовую часть и конечный мозг, включающего подкорковые или базальные ганглии и большие полушария.

Основные части головного мозга выделяются уже к 3-му месяцу эмбрионального развития, а к 5-му месяцу эмбриогенеза уже хорошо заметны основные борозды больших полушарий.

К моменту рождения общая масса головного мозга составляет около 400 г., причем у девочек он несколько меньше (388 и 391 у девочек и мальчиков соответственно). По отношению к массе тела мозг у новорожденного значительно больше, чем у взрослого. Так, если у новорожденного он составляет 1/8 массы тела, то у взрослого – 1/40. Наиболее интенсивно головной мозг человека развивается в первые два года постнатального развития. Затем темпы его роста снижаются, но продолжают оставаться высокими до 6-7 лет, к этому моменту масса мозга достигает уже 4/5 массы взрослого мозга. Окончательное созревание головного мозга заканчивается только к 17-20 годам. К этому возрасту масса мозга увеличивается по сравнению с новорожденными в 4-5 раз и составляет в среднем у мужчин 1400 г, а у женщин - 1260 г. Следует отметить, что абсолютная масса мозга не определяет непосредственно умственные способности человека.

Изменения размеров, формы и массы мозга сопровождается изменением его внутренней структуры. Усложняется строение нейронов, форма межнейронных связей, становится четко разграниченным белое и серое вещество, формируются различные проводящие пути головного мозга.

Развития мозга, как и других систем, идет гетерохронно. Раньше других созревают те структуры, от которых зависит нормальная жизнедеятельность организма на данном возрастном этапе. Функциональной полноценности достигают вначале стволовые, подкорковые и корковые структуры, регулирующие вегетативные функции организма. Эти отделы по своему развитию приближаются к мозгу взрослого человека уже к 2-4 годам постнатального периода.

Продолговатый мозг, мост, средний мозг, промежуточный мозг и мозжечок относятся к стволу мозга. В филогенетическом отношении это наиболее древние нервные структуры и поэтому их функции тесно связаны с регуляцией примитивных функциональных процессов.

В процессе онтогенеза созревание структур стволовой части головного мозга наиболее интенсивно происходит в первые два года жизни. Окончательное формирование этих структур, особенно промежуточного мозга, завершается только в 13-16 лет, когда заканчивается половое развитие подростков. Многие особенности низшей и высшей нервной деятельности у детей подросткового возраста объясняются функциональными свойствами промежуточного мозга и некоторых других подкорковых структур.

Наиболее молодым в филогенетическом отношении является конечный мозг. В его состав входят большие полушария и расположенные под ними скопления серого вещества в виде подкорковых или базальных ганглиев.

Большие полушария осуществляют регуляцию высших нервных функций, лежащих в основе всех психических процессов человека. Правое и левое полушарие тесно связаны между собой с помощью огромного количества нервных волокон, образующих мозолистое тело. Многие нервные процессы, выходящие из какой-либо точки одного полушария, проецируются в симметричную точку другого полушария. Таким образом, в нервной деятельности полушарий конечного мозга проявляется свойство билатеральной симметрии.

Существует предположение, что в процессе онтогенеза развитие парной деятельности полушарий идет от неустойчивой симметрии к неустойчивой асимметрии, и наконец, к устойчивой функциональной асимметрии. Это подтверждается развитием бимануальных действий человека, то есть особенностей двигательной деятельности левой и правой рук. Показано, что к праворукости дети переходят с 2-4 лет. В этом возрасте правши составляют 38%, а к 4-6 годам - 75%. Иначе говоря, в значительной степени моторная асимметрия зависит от условий воспитания ребенка, но вместе с тем существует и наследственная предрасположенность.

Темпы созревания левого и правого полушарий имеют половые особенности. Левое полушарие у девочек развивается быстрее, что свидетельствует о более раннем созревании доминантного полушария. Данный факт косвенно подтверждается также более быстрым развитием у девочек речи и некоторых показателей психомоторики.

Высшим центром регуляции и управления всей деятельностью организма, начиная от самых примитивных физиологических отправлений и кончая сложнейшими психическими процессами у человека, является кора головного мозга. Активное формирование полушарий мозга начинается с 12-й недели эмбриогенеза и интенсивно продолжается в первые годы постнатального развития, особенно до 2 лет. Клеточное строение, форма и расположение борозд и извилин приближается к взрослому мозгу в 7 лет. А в лобных долях это различие сглаживается только к 12 годам. Существует прямая зависимость между морфофункциональным созреванием лобных долей больших полушарий и формированием психических функций у детей. Окончательное созревание больших полушарий и коры мозга завершается к 20-22 годам.

Морфологический анализ процессов созревания КГМ ребенка на клеточном уровне свидетельствует о постоянном увеличении размеров высших первичных, вторичных и третичных зон КГМ в процессе постэмбрионального развития. чем больше возраст ребенка, тем больше размеры занимают эти корковые зоны, и тем сложнее становится психическая деятельность.

Таким образом, в процессе постнатального развития происходит совершенствование морфологического строения КГМ, а параллельно этому и совершенствование высшей нервной деятельности ребенка и его психических процессов. Например, поля двигательного центра речи достигают функциональной полноценности только к 7 годам, к этому возрасту они увеличиваются на 64-73% в сравнении с мозгом новорожденного. То же можно сказать и о корковых зонах, ответственных за интеграцию слуховых и зрительных раздражителей, что имеет большое значение в формировании речи.

Важные данные о функциональной зрелости коры и подкорковых образований мозга, и участия их в восприятии афферентных сигналов в разные возрастные периоды получены при использовании электрофизиологических методов. Анализ имеющихся в литературе данных о характере фоновой и вызванной электрической активности мозга человека на разных этапах онтогенеза рассматривается в связи с проблемой созревания высших отделов центральной нервной системы.

В раннем постнатальном периоде наиболее функционально зрелыми являются мезодиэнцефалические структуры мозга., определяющие ЭЭГ- картину глубокого сна и реакцию возбуждения у новорожденного ребенка. Ряд факторов свидетельствует, что кора больших полушарий начинает функционировать уже с момента рождения ребенка. Нервные элементы коры больших полушарий новорожденного способны продуцировать кратковременную ритмическую электрическую активность. Это выражается в виде: 1) наличие групп синхронизированных ЭЭГ-колебаний в затылочных областях мозга в переходном от бодрствования ко сну состоянии, 2)реакции усвоения ритма световых мельканий, наблюдаемая с первых часов жизни ребенка, 3) наличие ритмического сенсорного разряда, регистрируемого в затылочной области коры при значительной стимуляции. Отмечается, что кора больших полушарий новорожденных вовлекается в реакцию при афферентных воздействиях. В этом случае наблюдается как генерализованные изменения электрической активности, обусловленные возбуждением подкорковых неспецифических структур мозга, так и локальные вызванные ответы, свидетельствующие о поступлении сигнала в кору больших полушарий по специфическому афферентному пути. Наличие ответных специфических и неспецифических реакций на афферентное раздражение означает функционирование восходящих ретикулярных и таламокортикальных связей, посылающих сенсорную информацию в кору больших полушарий. Для оценки способности коры воспринимать приходящую информацию наибольший интерес представляет наличие с момента рождения ребенка начальной позитивности вызванного специфического ответа, свидетельствующее о непосредственном участии нейронов 3-го и 4-го слоев коры в приеме афферентного сигнала.

Подчеркивая функционирование коры больших полушарий в период новорожденности, следует иметь в виду и отличия в деятельности ее нервных элементов по сравнению со взрослыми. Одним из таких проявлений служит отсутствие синхронизированной ритмической активности во время бодрствования новорожденных. Устойчивая ритмика в ЭЭГ бодрствующих детей регистрируется только с 2-3 месяцев постнатальной жизни. Появление организованной ритмики в состоянии спокойного бодрствования отражает важный этап в созревании коры мозга ребенка. В этом возрасте исчезают архаические рефлексы, развивается оптомоторная пространственная координация.

В течении первого года жизни формируется строго ритмическая электрическая активность частотой 5 Гц с фокусом в затылочной области коры, которая может рассматриваться как аналог альфа ритма взрослого человека. С возрастом отмечается прогрессивное учащение альфа ритма, появление и стабилизация его в центральных областях коры. Формирование основного ритма электрической активности, отражающее морфофункциональное созревание нейронного аппарата коры больших полушарий, заканчивается к 16-18-летнему возрасту. Созревание нервных элементов коры больших полушарий проявляется также в эволюции специфически вызванных потенциалов. В процессе индивидуального развития ребенка отмечается укорочение временных параметров ответа, усложнение его компонентного состава и появление вызванных потенциалов в ассоциативных областях коры. Включения ассоциативных зон в прием и переработку качественно-специфической информации, вероятно определяет возможность синтеза интегрального образа раздражителей разного информационного значения.

Параллельно с изменениями ЭЭГ, обусловленными функциональным созреванием коры больших полушарий, отмечается уменьшение выраженности подкорковых знаков в ЭЭГ (тета - волн, билатеральных пароксизмальных разрядов, усиленных неспецифических ответов). Ослабление подкорковых знаков в ЭЭГ с возрастом можно объяснить усилением тормозных влияний созревающей коры на подкорковые структуры.

Таким образом, выявляются определенные этапы функционального созревания коры и подкорковых структур мозга, специфика их взаимных влияний в различные возрастные периоды.

24 ФУНКЦИОНАЛЬНАЯ АСИММЕТРИЯ МОЗГА — разделение когнитивных функций между правым и левым полушариями головного мозга человека.

  Сам факт межполушарной церебральной асимметрии мозга известен со второй половины 19 в., когда, опираясь на результаты посмертных вскрытий людей, страдавших по различным причинам (инсульт, иные поражения мозга) афазией (утратой речи), франц. нейроанатому Полю Брока удалось выявить локализацию речевого центра в лобной доле левого полушария. В дальнейшем на основании подобного рода данных нейрофизиологи пришли к выводу, что с доминирующим полушарием связаны не только праворукость и леворукость, но и большинство высших когнитивных функций человека.

Латерализация (разделение) и перекрещивание функций двух полушарий наблюдались исследователями также и применительно к процессам обработки зрительной и слуховой информации. Как оказалось, поле нашего зрения резко разграничено по вертикали, хотя эту границу мы субъективно не воспринимаем. Информация от правого поля зрения обоих глаз поступает в левое полушарие нашего мозга, а информация от левого поля зрения — в правое полушарие. Хотя информация, создаваемая на основе сигналов, поступающих из левого и правого полей зрения, одна и та же, обрабатывается она правым и левым полушариями по-разному. Аналогичным образом звуковые сигналы, воспринимаемые правым ухом, передаются, главным образом, в левое полушарие, и наоборот. Однако применительно к более примитивному органу чувств — обонянию — вообще не было обнаружено перекрещивания функций. Дальнейшие исследования здоровых людей в целом подтвердили наличие Ф. а. м. и двух когнитивных типов мышления — мышления правополушарного (пространственно-образного) и левополушарного (знаково-символического). С помощью метода электроэнцефалограммы было установлено, что при выполнении тестов, требующих аналитических мыслительных стратегий (напр., устный счет), происходит активация левого полушария, в то время как правое полушарие дает на электроэнцефалограмме альфа-ритм, характерный для бездействующего полушария. Убедительные данные о наличии Ф. а. м. и двух когнитивных типов мышления были получены также с помощью метода позитронно-эмиссионной томографии. Этот метод позволил выявить и наглядно представить с помощью сложной компьютерной техники локальные зоны активности мозга, обеспечивающие переработку различных видов когнитивной информации. Так, напр., у тех испытуемых, которые пытались вспомнить какую-то музыкальную мелодию, томограф зафиксировал активность соответствующих зон правого полушария; если же при этом пользовались нотами, то наблюдалась активность левой гемисферы. Это позволило предположить, что правое полушарие неповрежденного мозга оперирует исключительно перцептивными образами и представлениями, обеспечивая ориентацию в пространстве, а левое полушарие обрабатывает информацию, представленную только в символьной, в том числе и в словесно-знаковой, форме. Однако, как показали дальнейшие эксперименты, функциональные различия между полушариями не определяются специфическими форматами внутренних репрезентаций (т.е. тем, представлена ли информация в символьной, словесно-знаковой или перцептивно-образной формах). Хотя правое полушарие и не способно к развитой речепродукции, оно все же воспринимает элементарную речь и простые грамматические конструкции, а левое полушарие может оперировать несложными перцептивными представлениями и геометрическими фигурами. Поэтому исследователи пришли к выводу, что различия между функциями полушарий и, соответственно, когнитивными типами мышления касаются, главным образом, способов переработки информации, принципов организации контекстуальной связи стимулов, доминирующих мыслительных стратегий.

25. Типы высшей нервной деятельности (ВНД) — совокупность врожденных (генотип) и приобретенных (фенотип) свойств нервной системы, определяющих характер взаимодействия организма с окружающей средой и находящих свое отражение во всех функциях организма. Удельное значение врожденного и приобретенного — продукт взаимодействия генотипа и среды — может меняться в зависимости от условий. В необычных, экстремальных условиях на первый план выступают преимущественно врожденные механизмы высшей нервной деятельности. Различные комбинации трех основных свойств нервной системы — силы процессов возбуждения и торможения, их уравновешенности и подвижности — позволили И.П. Павлову выделить четыре резко очерченных типа, отличающихся по адаптивным способностям и устойчивости к невротизирующим агентам.

Т. ВНД сильный неуравновешенный — характеризуется сильным раздражительным процессом и отстающим по силе тормозным, поэтому представитель такого типа в трудных ситуациях легко подвержен нарушениям ВНД. Способен тренировать и в значительной степени улучшать недостаточное торможение. В соответствии с учением о темпераментах — это холерический тип.

Т. ВНД уравновешенный инертный — с сильными процессами возбуждения и торможения и с плохой их подвижностью, всегда испытывающий затруднения при переключении с одного вида деятельности на другой. В соответствии с учением о темпераментах — это флегматический тип.

Т ВНД сильный уравновешенный подвижный — имеет одинаково сильные процессы возбуждения и торможения с хорошей их подвижностью, что обеспечивает высокие адаптивные возможности и устойчивость в условиях трудных жизненных ситуаций. В соответствии с учением о темпераментах — это сангвинический тип.

Т.ВНД слабый — характеризуется слабостью обоих нервных процессов — возбуждения и торможения, плохо приспосабливается к условиям окружающей среды, подвержен невротическим расстройствам. В соответствии с классификацией темпераментов — это меланхолический тип.

Пластичность нервной системы И.П. Павлов называл важнейшим педагогическим фактором. Сила, подвижность нервных процессов поддаются тренировке, и дети неуравновешенного типа под влиянием воспитания могут приобрести черты, сближающие их с представителями уравновешенного типа. Длительное перенапряжение тормозного процесса у детей слабого типа может привести к “срыву” высшей нервной деятельности, возникновению неврозов. Такие дети с трудом привыкают к новому режиму работу и нуждаются в специальном внимании.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]