Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по Билоус_готовые.doc
Скачиваний:
121
Добавлен:
12.12.2013
Размер:
3.53 Mб
Скачать

19 Вопрос

Вертикальный и интегральный принципы фазосмещения в СИФУ ТП. Способ обеспечения линейной зависимости .

Сущность вертикального фазового управления заключается в сравнении переменного напряжения (пилообразной, синусоидальной, треугольной и других форм) с постоянным напряжением регулируемой величины, поступающим от устройств автоматического регулирования. На рис 34 представлена структурная схема одного из вариантов ФСУ подобного типа. Основными узлами его являются генератор пилообразного напряжения (ГПН) синхронизированный с синусоидальным питающим напряжением с помощью СУ, нуль-орган НО (компаратор) и источник регулируемого постоянного напряжения, величина которого UУ регулируется вручную или автоматически.

В этой схеме формирование включающего импульса происходит в момент равенства пилообразного напряжения генератора Uг и напряжения управления UУ. При изменении UУ изменяется фаза управляющего импульса. Функции сравнивающего устройства выполняет нуль- орган “НО”, на входы которого поступают напряжения UУ и Uг. Нуль- орган может быть выполнен по различным схемам и на разной элементной базе. Например, может быть использована схема компаратора, выполненная на операционном усилителе.

Генератор пилообразного напряжения в описанной схеме имеет линейно спадающее напряжение, мгновенное значение которого сравнивается сUУ. Обычно в таких ГПН используется процесс заряда емкости постоянным по величине током.

Рис 34

Недостатком этого ГПН является нелинейность характеристики “вход-выход” тиристорного преобразователя. Эта нелинейность обусловлена нелинейной зависимостью Ed = (). При линейном пилообразном напряжении сохраняется линейная зависимость  = (UУ ), но зависимость выходной ЭДС от UУ остается нелинейной. Это обстоятельство является существенным недостатком ТП, т.к. в системах АЭП приходится устранять эту нелинейность теми или иными методами.

Иногда указанная нелинейность компенсируется за счет нелинейности опорного напряжения (переменное напряжение, которое сравнивается по величине с UУ ). Нелинейность опорного напряжения должна быть такой, чтобы она компенсировала нелинейность регулировочной характеристики ТП. Чаще всего в качестве опорного напряжения используется часть синусоиды напряжения питания ТП, а именно ее косинусоидальная часть.

На рис 35 изображена диаграмма напряжения трехфазного нулевого ТП, а также, диаграмма напряжений при формировании управляющих импульсов. Как и на предыдущей диаграмме здесь реализован вертикальный принцип фазосмещения. При этом, в качестве опорного напряжения использована косинусоидальная часть переменного напряжения не участвующей в коммутации фазы. Так, при коммутации фаз “a”-“b” опорным напряжением является “перевернутая” фаза “c”; при коммутации фаз “b”-“c”, опорное напряжение- “перевернутая” фаза “а” и т.д.

В соответствии с диаграммой, зависимость угла  от UУ - арккосинусоидальная ( = arccos UУ ), зависимость Ud от  - косинусоидальная (Ud = Ud0 cos  ). Зависимость же Ud = (UУ ), вследствие того, что одна нелинейность компенсирует другую, оказывается линейной. Это показано на рис 36:

Рис 36

Достоинства описанной системы очевидны. Линейность характеристики вход-выход тиристорного преобразователя существенно облегчает включение его в систему автоматического регулирования координат электропривода.

Во-вторых, облегчается синхронизация опорного напряжения с напряжением питающей сети, т.к. это опорное напряжение не что иное, как часть синусоиды одной из фаз того- же напряжения сети. Однако, на пути внедрения этой системы стояли некоторые объективные трудности. Дело в том, что напряжению сети свойственна некоторая нестабильность, что затрудняло использование его в качестве опорного напряжения. Такая нестабильность, как высокочастотные искажения синусоиды устраняется с помощью фильтров. Сложнее преодолеваются трудности, связанные с “посадками” напряжения, которые допускаются “Правилами эксплуатации электроустановок” в определенных пределах. Но в СИФУ уменьшение амплитуды опорного напряжения чревато пропусками управляющих импульсов, что недопустимо. Во избежание этого, в высшей точке опорного напряжения создается импульс напряжения, что не позволяет UУ при максимальных его значениях избежать пересечения с Uопорн .(рис 35).

Наконец, последняя трудность связана с изменяющимся наклоном кривой опорного напряжения. Чувствительности нуль- органа может не хватить для четкого его срабатывания, когда опорное напряжение выполаживается, т.е. в верхней и в нижней точках.

Возможность преодоления этого затруднения реализовалась, когда появились компараторы на операционных усилителях с очень большими коэффициентами усиления. В настоящее время СИФУ, обеспечивающие линейность характеристики “вход- выход” ТП получают все более широкое распространение.

3.5.2.4.Интегральный принцип фазосмещения управляющих импульсов ТП.

Сущность этого принципа фазосмещения можно прояснить, рассмотрев структурную схему, изображенную на рис 37:

Рис 37

В схему входят следующие элементы:

  1. Синхронизирующее устройство(СУ);

  2. Регулятор тока (РТ), обеспечивающий ток заряда интегрирующей емкости (си), значение которого определяется величиной управляющего напряжения UУ ;

  3. Пороговый элемент (ПЭ) срабатывает при достижении потенциала заряда емкости (си ) порогового значения. При срабатывании ПЭ емкость разряжается через него на выходное устройство (Вых.У), которое формирует управляющий импульс на тиристор.

Схема работает следующим образом:

В моменты естественной коммутации СУ посылает сигнал (импульсы) на РТ. Начиная с момента естественной коммутации РТ обеспечивает заданное значение тока заряда емкости си . Время накопления заряда на емкости до величины потенциала срабатывания порогового элемента- это время задержки подачи управляющего импульса на управляющий электрод тиристора. Оно определяет величину угла управления “”. Дальше схема работает так, как сказано выше.

Достоинством схем с интегральным принципом фазосмещения является их простота и надежность. Их недостаток- более низкая точность поддержания величины угла “” на заданном значении. Такие системы находят применение в маломощных ТП с нежесткими требованиями к статическим и динамическим показателям электропривода. Диапазон мощностей электропривода с описанными ТП - (215)кВт.