Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лаб6.doc
Скачиваний:
8
Добавлен:
07.02.2016
Размер:
143.87 Кб
Скачать

Как теорию связать с практикой

В то время Шеннон только перешел в Массачусетский технологический университет. Желая подработать, Шеннон выполнял обязанности оператора на неуклюжем механическом вычислительном устройстве под названием “дифференциальный анализатор”, который построил в 1930 г. научный руководитель Шеннона профессор В. Буш. Это была первая машина, способная решать сложные дифференциальные уравнения, которые позволяли предсказывать поведение таких движущихся объектов, как самолет, или действие гравитационного поля. На решение таких уравнений вручную уходили иногда целые месяцы. Однако машина обладала рядом недостатков. Прежде всего—ее гигантские размеры: механический анализатор Буша представлял собой сложную систему валиков, шестеренок и проволок, соединенных в серию больших блоков, которые занимали целую комнату. Чтобы поставить машине задачу, оператор вынужден был вручную подбирать множество шестереночных передач, на что уходило 2—3 дня. При любом измерении параметров задачи оператору приходилось изрядно потрудиться и перепачкаться в машинном масле.

В качестве темы диссертации Буш предложил Шеннону изучить логическую организацию своей машины. По мере того, как Шеннон все глубже вникал в устройство машины, у него росло настойчивое желание усовершенствовать ее. Вспомнив Булеву алгебру, которую он изучал еще студентом, Шеннон поразился ее сходством с принципом работы электрических схем. Постепенно у Шеннона стали вырисовываться контуры устройства компьютера. Если построить электрические цепи в соответствии с принципами булевой алгебры, то они могли бы выражать логические отношения, определять истинность утверждений, а также выполнять сложные вычисления. Электрические схемы, очевидно, были бы гораздо удобнее шестеренок и валиков, щедро смазанных машинным маслом. Свои идеи Шеннон изложил в докторской диссертации в 1938 г.

А в это время на другом конце страны Джордж Стибиц, математик из фирмы “Белл телефон лабораторис”, по привычке размышлял на досуге “о том, о сем”. Однажды, в 1937 г., ему в голову пришла мысль, что булева логика—это естественный язык, на котором должна основываться работа систем электромеханических телефонных реле.

От слов к делу

Стибиц сразу приступил к делу, полагая, что руководство фирмы найдет применение его результатам. Как и все любители по изобретать, он начал с того, что собрал необходимые детали и принадлежности. Работая по вечерам за кухонным столом, он собрал аппарат из старых реле, пары батареек, лампочек, проводов и металлических полосок, нарезанных из жестяных банок. Созданное им устройство, было электромеханической схемой, которая выполняла операцию двоичного сложения.

Еще через пару лет Стибиц вместе с другим сотрудником фирмы разработал устройство, способное производить операции вычитания, умножения и деления, а также сложения комплексных чисел. Стибиц назвал свое устройство калькулятором комплексных чисел, и в январе 1940 г. ее начали использовать в управлении фирмы на Манхэттэне. Установленный рядом телетайп передавал на машину сигналы и через считанные секунды получал ответ.

Однако еще до того, как Шеннон закончил диссертацию, а Стибиц начал собирать модель калькулятора на кухонном столе, подобной работой занялся их собрат по духу Конрад Цузе, живший в Берлине.

В 1936 г. Цузе уволился из технической фирмы, где работал, и отдал все свое время разработке компьютера. Получив немного денег от друзей, он устроил “мастерскую” на маленьком столе в углу гостинной в доме родителей. Когда машина стала приобретать форму и разростаться в размерах, ему пришлось придвинуть еще несколько столов, а затем переместиться со своим детищем в середину комнаты. Через 2 года он завершил постройку машины, которая занимала около 4 м2 и представляла собой хитросплетение реле и проводов.

Машина Z1 имела клавиатуру с которой вводились в нее условия задач. По завершении вычислений результат высвечивался на панели с множеством маленьких лампочек. В общем Цузе был доволен своим аппаратом, сомнения вызывала только клавиатура, которая, на его взгляд, была неудобной и слишком медленно действовала. Перебрав в уме другие варианты, он придумал очень остроумное и дешевое устройство ввода: Цузе стал кодировать инструкции для машины, пробивая отверстия в использованной 35-миллиметровой фотопленке. Машина, работавшая с перфорированной лентой, получила название Z2.

Цузе с энтузиазмом продолжал работу в одиночку до 1939 г. Но тут началась вторая мировая война. Цузе, Стибиц и другие пионеры вычислительной техники по обе стороны Атлантического океана оказались втянутыми в лихорадочную гонку, целью которой было создание на основе их разработок принципиально нового вида вооружений. Война дала мощный импульс дальнейшему развитию теории и практики вычислительной техники. Она также способствовала тому, что были собраны воедино разрозненные достижения ученых и изобретателей, внесших свой вклад в развитие двоичной математики, начиная с Лейбница. Двухсимвольное представление информации в конце концов было принято за основу языка ЭВМ.