Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
53
Добавлен:
05.02.2016
Размер:
1.35 Mб
Скачать

Переменные процентные ставки.

В кредитных соглашениях иногда предусматриваются изменяющиеся во времени процентные ставки. В инвестиционных расчетах понятие переменной процентной ставки является одним из важнейших.

Определение. Процентная ставка называется переменной, если она изменяет свое значение в течение срока долга.

Рассмотрим дискретные переменные процентные ставки. Пусть n - срок долга, n = n1 + n2 + … + nk , где nj - период в сроке долга, когда применяется процентная ставка ij или учетная ставка dj, j = 1,2,…, k.

1) Наращение и дисконтирование по простой переменной процентной ставке.

Согласно формуле (1.8), проценты за каждый период nj в сроке долга составляют

.

Проценты за весь срок долга

.

Тогда наращенная сумма к концу срока долга n составит:

. (1.52)

Предположим, что известна сумма погашаемого долга Sn. Формула современной величины суммы Sn при математическом ее учете по простой переменной процентной ставке имеет вид:

. (1.53)

Применяя формулу (1.20) последовательно для периодов nk, nk – 1, …,n2 , n1, получим формулу современной величины суммы Sn при банковском ее учете по простой переменной учетной ставке:

. (1.54)

Соответственно, формула наращенной суммы долга по простой переменной учетной ставке имеет вид:

. (1.55)

2) Наращение и дисконтирование по сложной переменной процентной ставке.

Применяя формулу (1.13) последовательно для каждого периода наращения n1, n2, … , nk , получаем формулу наращенной суммы долга по переменной сложной процентной ставке:

. (1.56)

Если известна сумма погашаемого долга Sn, то, применяя формулу (1.17) или (1.21) последовательно для каждого периода дисконтирования nk, nk – 1, … , n2, n1, получим формулы приведенной к моменту t = 0 величины суммы Sn при математическом и банковском ее учете по сложной переменной процентной ставке:

. (1.57)

. (1.58)

Формулы (1.40) и (1.43) можно рассматривать как формулы наращения суммы долга по переменным эффективным и номинальным процентным ставкам.

Пример 1.15. Ожидаемая эффективная процентная ставка на первый год – 10 %, на второй – 12 %, на третий и четвертый – 14 %. В конце четвертого года заемщик обязуется погасить долг в размере 2000 д.е. Какова может быть сумма кредита?

Примем за единицу измерения времени 1 год. Тогда по формуле (1.57) получаем

= 1249,14 (д.е.).

3) Наращение и дисконтирование по непрерывным переменным процентным ставкам. Переменную непрерывную процентную ставку δ(t) называют интенсивностью процентов или силой роста в единицу времени в момент t. Формула наращенной суммы долга при непрерывном начислении процентов, когда интенсивность процентов δ(t) является функцией времени, имеет вид (1.46):

.

Задавая конкретный вид зависимости δ(t), моделируют поведение интенсивности процентов во времени. Рассмотрим наиболее часто используемые формулы для δ(t). Для этого введем обозначения. Обозначим через F(t) и ν(t) множитель наращения и дисконтный множитель соответственно по переменной силе роста δ(t) в момент t, где t ≥ 0. F(t) – это накопление (стоимость) в момент t единичного вклада, сделанного в момент t = 0. ν(t) - это современная стоимость 1 д.е., подлежащей выплате в момент t. Для вклада, сделанного в момент t = 0, множитель наращения в момент t имеет вид:

. (1.59)

Тогда дисконтный множитель в момент t равен

(1.60)

Если δ(t) интегрируема, то F(t) и ν(t) являются непрерывными функциями времени t. В случае, когда интенсивность процентов является постоянной величиной, т.е. δ(t) = δ для всех t, множитель наращения и дисконтный множитель имеют вид F(t) = eδt и ν(t) = eδt. Наращенная сумма долга в момент t может быть найдена по формуле

, (1.61)

где P0 - первоначальная сумма долга в момент t = 0. Современная стоимость суммы St, подлежащей выплате в момент t, равна

. (1.62)

1. δ(t) - линейная функция времени, т.е. δ(t) = δ0 + at.

Здесь δ0 – начальное значение силы роста, a - годовой прирост силы роста. Так как a = δ(t + 1) – δ(t), то a может быть положительным, отрицательным или равно нулю, т.е. возможны значения a > 0, a < 0, a = 0. Значение a = 0 соответствует постоянной силе роста δ0. График зависимости интенсивности процентов от времени имеет вид, показанный на рис. 1.1.5.

Рис. 1.1.5

Как видим, в случае, когда предполагается линейное уменьшение интенсивности процентов, срок долга не должен превышать величину , гдеa < 0.

Рассмотрим поведение множителя наращения для всех трех случаев. Так как

,

то

. (1.63)

Отсюда следует, что для каждогоt, причем F(t) = 1 в момент t = 0. Если a ≥ 0, то ,.Характер зависимости множителя наращения F(t) от времени для случаев, когда a > 0 и a = 0 показан на рис. 1.1.6. При a = 0 множитель наращения имеет вид .

Если a < 0, то производная в точкеизменяет свой знак с“+” на “–“ , а функция F(t) в этой точке достигает своего максимального значения, причем

.

Из этого в частности следует, что задача об увеличении суммы долга в число раз, превышающее значение , в случаеa < 0 является некорректной. При построении графика функции F(t) учтем, что при a < 0 множитель наращения F(t) ≥ 1, если , т.е.и. График зависимости множителя наращения F(t) от времени при a < 0, приведен на рис. 1.1.6. Поведение множителя наращения в этом случае показывает, что процесс наращения суммы долга прекращается в момент , что подтверждает ранее сделанный вывод о сроке долга дляa < 0.

Рис. 1.1.6

Пример 1.16. Предполагается, что годовая интенсивность процентов - линейная функция времени. Начальное значение силы роста равно 0,1. Годовой прирост интенсивности процентов составляет: а) 0,025; б) 0; в) - 0,025. Рассчитать значения множителя наращения для следующих сроков долга: 3, 4, 5, 6, 7, 8, 9 лет.

Согласно условию, δ(t) = δ0 + at. Здесь δ0 = 0,1. Значения параметра a следующие: а) a = 0,025; б) a = 0; в) a = – 0,025. Множитель наращения в каждом из трех случаев имеет вид:

а) ; б)в).

Значения множителей наращения для указанных сроков приведены в таблице:

a

3

4

5

6

7

8

9

а)

0,025

1,511

1,822

2,254

2,858

3,715

4,953

6,770

б)

0

1,350

1,492

1,649

1,822

2,014

2,226

2,460

в)

–0,025

1,206

1,221

1,206

1,162

1,091

1,000

0,894

Как видим, результаты вычислений соответствуют характеру кривых на рис. 1.1.6. В случае, когда a = – 0,025 максимальное значение множителя наращения равно = 1,221 и достигается оно при сроке долга, равном= 4 года, что соответствует таблице.

Пример 1.17. 1 января 1998 года клиент положил в банк 1500 д.е. К 1 января 2002 года его вклад вырос до 1832,105 д.е. Предполагается, что интенсивность процентов в течение всего срока вклада являлась линейной функцией времени. Найти годовую интенсивность процентов на 1 января 2000 года.

Момент t = 0 соответствует 1 января 1998 года. Множитель наращения F(0) = 1, F(4) = . Требуется найти интенсивность процентов в моментt = 2, т.е. δ(2). Так как δ(t) - линейная функция времени (параметры которой неизвестны), то является квадратичной функцией. Производная квадратичной функцииf(x) обладает следующим свойством:

.

Так как

,

то

является квадратичной функцией на отрезке [0, 4]. Тогда по свойству производной квадратичной функции

.

Так как линейная функция является непрерывной, то по свойству интеграла с переменным верхним пределом

.

Из последних двух равенств следует

.

Так как t = 2, h = 2, то

.

Этот ответ можно проверить. Значение F(4) совпадает со значением множителя наращения для 4-летнего срока долга в третьей строке таблицы предыдущего примера. По значениям параметров δ0 = 0,1 и a = – 0,025 для этой строки находим

δ(2) = δ0 + 2a = 0,05.

Следовательно, годовая интенсивность процентов на 1 января 2000 года была 0,05.

2. δ(t) - показательная функция времени, т.е. δ(t) = δ0 at .

Здесь δ0 – начальное значение силы роста, a - годовой темп изменения силы роста. Так как , то возможны значения a > 1, 0 < a < 1, a =1. Значение a = 1 соответствует постоянной силе роста δ0. График зависимости интенсивности процентов от времени имеет вид, показанный на рис. 1.1.7 .

Рис. 1.1.7

Из определения параметра a следует, что =a – 1. Это означает, что если предполагается изменение интенсивности процентов по показательному закону, то относительное изменение силы роста за год является величиной постоянной и равной a – 1. Причем a – 1 > 0, если интенсивность процентов в единицу времени возрастает, и a – 1 < 0, если интенсивность процентов уменьшается.

Рассмотрим поведение множителя наращения для всех трех случаев значений a. Если a = 1, то множитель наращения имеет вид . Приa > 0, a ≠ 1 имеем

.

Тогда

. (1.64)

При любом a > 0 производная . Значит, во всех трех случаяхF(t) – возрастающая функция времени. Кроме того, , еслиa ≥ 1. Чтобы построить кривые наращения, преобразуем выражение (1.64). Разложим at в степенной ряд:

Так как

,

то

Отсюда следует, что для каждогоt, причем F(t) = 1 в момент t = 0. Кроме того, при0 < a < 1. Из этого, в частности, следует, что задача об увеличении суммы долга в число раз, превышающих значение , в случае0 < a < 1 является некорректной. Характер зависимости множителя наращения F(t) от времени показан на рис. 1.1.8.

Рис. 1.1.8

Пример 1.18. Предполагается, что годовая интенсивность процентов - показательная функция времени. Интенсивность процентов а) увеличивается ежегодно на 10%; б) уменьшается ежегодно на 10%; в) остается постоянной. Начальное значение силы роста 0,1. Найти срок удвоения суммы долга.

Согласно условию, δ(t) = δ0at. Здесь δ0 = 0,1. В случае а) a – 1 = 0,1. Следовательно a = 1,1. В случае б) a – 1 = – 0,1. Следовательно, a = 0,9. В случае в) a = 1. F(n) = 2, где n – искомый срок. Для случая б) рассчитаем величину = 2,583> 2. Следовательно, задача является корректной и ее решение существует. Для случаев а) и б) разрешим равенство относительноn:

.

Разрешая равенство относительноn, получим для случая в):

.

Тогда в случае а) n = 5,322 или 5 лет и 117 дней; в случае б) n = 12,438 или 12 лет и 160 дней; в случае в) n = 6,931 или 6 лет и 340 дней. Полученные значения сроков долга соответствуют характеру кривых наращения на рис. 1.1.8.

Замечание. Убедиться самостоятельно, что если F(n) = 3, то в случае б) задача не имеет решения.

Пример 1.19. Предполагается, что годовая интенсивность процентов - показательная функция δ(t) = 0,09(0,9)t. Найти современную стоимость 1000 д.е., подлежащих выплате через 3 года.

По формуле (1.60) дисконтный множитель, соответствующий данному закону изменения интенсивности процентов, имеет вид

.

Тогда по формуле (1.62) находим современную стоимость 1000 д.е., подлежащих выплате через 3 года:

.

3. -кусочно – постоянная функция.

Этот случай удобнее рассмотреть на конкретном примере. Предположим, что

.

Кусочно-постоянная функция является интегрируемой. Найдем множитель наращения F(t). Если , то

.

Если , то

.

Если , то

.

Таким образом,

.

Рис. 1.1.9

Предположим, время измеряется в годах. Найдем наращенную сумму вклада 100 д.е., произведенного в момент t = 0, через 4 года и через 12 лет. По формуле (1.61) получаем , если срок долга, ипри. Тогда(д.е.) и(д.е.).

4) Формула Студли.

Еще один пример формулы для δ(t) является формула Студли, которая может быть записана следующим образом:

. (1.65)

Параметры p, r и s выбираются так, чтобы моделировать плавное убывание или плавное возрастание интенсивности процентов. Подробнее об этой формуле можно посмотреть в [3].

Соседние файлы в папке Мельников_Мат_мет_фин_ан