
- •Содержание
- •1 Формальные языки и грамматики
- •1.1 Основные понятия теории формальных языков
- •Определение Цепочка, которая не содержит ни одного символа, называется пустой цепочкой и обозначается .
- •1.2 Способы задания языков
- •1.2.1 Формальные грамматики
- •1.2.1.1 Определение формальной грамматики
- •Определение Цепочка (vtvn)* выводима из цепочки в грамматике(обозначается*), если существует последовательность цепочек (n0) такая, что .
- •1.2.1.3 Эквивалентность грамматик
- •1.2.2 Формы Бэкуса - Наура
- •1.2.3 Диаграммы Вирта
- •1.2.5 Механизмы распознавания языков
- •1.2.5.1 Определение распознавателя
- •1.2.5.2 Схема работы распознавателя
- •1.2.5.3 Классификация распознавателей
- •2 Регулярные грамматики и языки
- •2.1 Регулярные выражения
- •2.2 Лемма о разрастании языка
- •2.3 Конечные автоматы
- •2.3.1 Определение конечного автомата
- •2.3.2 Распознавание строк конечным автоматом
- •Существуют следующие способы представления функции переходов: - командный способ.Каждую команду ка записывают в форме , где.
- •2.3.3 Преобразование конечных автоматов
- •2.3.3.1 Преобразование конечного автомата к детерминированному виду
- •Алгоритм Преобразование нка в дка
- •2.3.3.2 Минимизация конечного автомата
- •2.3.3.2.1 Устранение недостижимых состояний ка
- •2.3.3.2.2 Объединение эквивалентных состояний ка Алгоритм Объединение эквивалентных состояний ка
- •2.4 Взаимосвязь способов определения грамматик
- •2.4.1 Построение ка по регулярной грамматике
- •Выход:ка.
- •3 Контекстно-свободные языки и грамматики
- •3.1 Задача разбора
- •3.1.1 Вывод цепочек
- •Определение Цепочка (vtvn)* выводима из цепочки в грамматике(обозначается*), если существует последовательность цепочек (n0) такая, что .
- •3.1.2 Дерево разбора
- •3.1.2.1 Нисходящее дерево разбора
- •3.1.2.2 Восходящее дерево разбора
- •3.1.3 Однозначность грамматик
- •3.2 Преобразование кс-грамматик
- •3.2.1 Проверка существования языка грамматики
- •3.2.2 Устранение недостижимых символов
- •Алгоритм Устранение нетерминалов, не порождающих терминальных строк Вход: кс-грамматика.
- •Алгоритм Устранение недостижимых символов Вход: кс-грамматика.
- •Определим множество достижимых символов z грамматики g, т.Е. Множество
- •3.2.3 Устранение -правил Алгоритм Устранение -правил Вход: кс-грамматика.
- •3.2.4 Устранение цепных правил Алгоритм Устранение цепных правил Вход: кс-грамматика.
- •3.2.5 Левая факторизация правил Алгоритм Устранение левой факторизации правил Вход: кс-грамматика.
- •3.2.6 Устранение прямой левой рекурсии Алгоритм Устранение прямой левой рекурсии Вход: кс-грамматика.
- •3.3 Автомат с магазинной памятью
- •3.3.1 Определение мп-автомата
- •3.3.2 Разновидности мп-автоматов
- •3.3.3 Взаимосвязь мп-автоматов и кс-грамматик
- •3.3.3.1 Построение мп-автомата по кс-грамматике
- •3.3.3.2 Построение расширенного мп-автомата по кс-грамматике
- •3.4 Нисходящие распознаватели языков
- •3.4.1 Рекурсивный спуск
- •3.4.1.1 Сущность метода
- •3.4.1.2 Достаточные условия применимости метода рекурсивного спуска
- •3.4.2 Распознаватели ll(k)-грамматик
- •3.4.2.1 Определение ll(k)-грамматики
- •3.4.2.2 Необходимое и достаточное условие ll(1)-грамматики
- •3.4.2.3 Построение множества first(1, a)
- •3.4.2.4 Построение множества follow(1, a)
- •3.4.2.5 Алгоритм «сдвиг-свертка» для ll(1)-грамматик
- •Шаг 6. Получили следующую цепочку вывода:
- •3.5.1.1.2 Поиск основы сентенции грамматики
- •3.5.1.1.3 Построение множеств l(a) и r(a)
- •3.5.1.1.5 Алгоритм «сдвиг - свертка» для грамматик простого предшествования
- •Шаг 3. Функционирование распознавателя для цепочки (((aa)a)a) показано в таблице 3.9.
- •3.5.1.2 Грамматика операторного предшествования
- •3.5.1.2.1 Определение грамматики операторного предшествования
- •3.5.1.2.2 Построение множеств Lt(a) и Rt(a)
- •3.5.1.2.4 Алгоритм «сдвиг-свертка» для грамматики операторного предшествования
- •3.5.2 Распознаватели lr(k)-грамматик
- •3.6 Соотношение классов кс-грамматик и кс-языков
- •3.6.1 Соотношение классов кс-грамматик
- •3.6.2 Соотношение классов кс-языков
- •4 Принципы построения языка
- •4.1 Лексика, синтаксис и семантика языка
- •4.2 Определение транслятора, компилятора, интерпретатора и ассемблера.
- •4.3 Общая схема работы компилятора
- •4.4 Лексический анализ
- •4.4.1 Задачи лексического анализа
- •4.4.2 Диаграмма состояний с действиями
- •4.4.3 Функция scanner
- •4.5 Синтаксический анализатор программы
- •4.5.1 Задача синтаксического анализатора
- •4.5.2 Нисходящий синтаксический анализ
- •Теорема Достаточные условия применимости метода рекурсивного спуска
- •4.6 Семантический анализ программы
- •4.6.1 Обработка описаний
- •4.6.2 Анализ выражений
- •4.6.3 Проверка правильности операторов
- •4.7 Генерация кода
- •4.7.1 Формы внутреннего представления программы
- •4.7.1.1 Тетрады
- •4.7.1.2 Триады
- •4.7.1.3 Синтаксические деревья
- •4.7.1.4 Польская инверсная запись
- •Составной оператор begin s1; s2;...; Sn end в полиЗе записывается как s1 s2... Sn.
- •4.7.1.5 Ассемблерный код и машинные команды
- •4.7.2 Преобразование дерева операций в код на языке ассемблера
- •4.8 Оптимизация кода
- •4.8.1 Сущность оптимизации кода
- •4.8.2 Критерии эффективности результирующей программы
- •4.8.3 Методы оптимизации кода
- •4.8.4 Оптимизация линейных участков программ
- •4.8.4.1 Свертка объектного кода
- •4.8.4.2 Исключение лишних операций
- •4.8.5 Оптимизация логических выражений
- •4.8.6 Оптимизация циклов
- •4.8.7 Оптимизация вызовов процедур и функций
- •4.8.9 Машинно-зависимые методы оптимизации
- •4.8.9.1 Распределение регистров процессора
- •4.8.9.2 Оптимизация кода для процессоров, допускающих распараллеливание вычислений
- •5 Формальные методы описания перевода
- •5.1 Синтаксически управляемый перевод
- •5.1.1 Схемы компиляции
- •5.1.4 Практическое применение су-схем
- •5.2 Транслирующие грамматики
- •5.2.1 Понятие т-грамматики
- •5.3 Атрибутные транслирующие грамматики
- •5.3.1 Синтезируемые и наследуемые атрибуты
- •5.3.2 Определение и свойства ат-грамматики
- •5.3.3 Формирование ат-грамматики
- •Решение
2 Регулярные грамматики и языки
2.1 Регулярные выражения
Регулярный язык Lв некотором алфавитепредставляет собой регулярное множество строк.
Определение Регулярное множество есть, либо {}, либо {а} для некоторогоа, либо множество, которое можно получить из указанных множеств путем применения конечного числа операций сцепления, объединения и итерации.
В основе метода определения регулярности заданного языка лежит лемма о разрастании языка.
2.2 Лемма о разрастании языка
В достаточно длинной строке регулярного языка всегда можно найти непустую подстроку, повторение которой произвольное количество раз порождает новые строки того же самого языка.
Пример ЯзыкL1= {ambn |m,n0} – регулярный, т.к., например, в строкеaabbbповторение любой подстроки, образованной только из нулей или единиц, порождает строки (aaaabbb,aaabbb,aabbbb,aabbbbbbи т.д.) языкаL1.
Язык L2= {anbn |n1} – не регулярный, т.к. Действительно, любая итерация подстроки, состоящей только из нулей или единиц, нарушает баланс нулей и единиц. Подобные действия со смешанными подстроками, содержащими нули и единицы, приводят к нарушению порядка следования нулей и единиц. Таким образом, для языкаL2 не строк, удовлетворяющих условиям леммы.
Удобным средством формального определения регулярных языков являются регулярные выражения.
Определение Регулярные выражения над алфавитомопределяются следующим образом:
1) - регулярное выражение (обозначает пустоте регулярное множество);
2) - регулярное выражение (обозначает регулярное множество {}, состоящее из пустой строки);
3) а- регулярное выражение (обозначает множество {а});
4) если pиq– регулярные выражения, обозначающие множестваPиQ, то посредством операций над выражениями определяются выражения следующих трех типов:
а) p|qилиp+q– регулярное выражение (обозначает объединениеPQ), где символ | или + называют операциейили(альтернативы);
б) pqилиpq – регулярное выражение (обозначает множествоPQ= {xy|xP,yQ}), где символ «точка» (возможно умалчиваемый) называют операциейсцепления(конкатенации);
в) p*- регулярное выражение (обозначает множествоP*), где символ «*» называют операцией итерации.
Соотношение между регулярными языками и регулярными выражениями устанавливает теорема Клини.
Теорема Клини. Каждому регулярному языку из*соответствует регулярное выражение над множеством.
Пример Примеры регулярных выражений и их значений представлены в таблице 2.1.
Таблица 2.1 – Примеры регулярных выражений
Регулярное выражение |
Значение регулярного выражения |
01 |
единственная строка 01 |
0|1 |
две строки: 0 и 1 |
1* |
строки, образованные из единиц, включая пустую строку |
(0|1)* |
строки, образованные из символов 0 и 1, включая пустую строку |
0|1* |
строки, состоящие из нуля и любой строки единиц, включая пустую |
0|1* |
строки, состоящие из нуля и любой строки единиц, включая пустую |
(0|1)*011 |
строки, образованные из символов 0 и 1, включая пустую, обязательно оканчивающиеся строкой 011 |
В практических приложениях вводятся дополнительные соглашения относительно записи регулярных выражений, например, запись вида р+используется для обозначения выражениярр*.