
- •Содержание
- •1 Формальные языки и грамматики
- •1.1 Основные понятия теории формальных языков
- •Определение Цепочка, которая не содержит ни одного символа, называется пустой цепочкой и обозначается .
- •1.2 Способы задания языков
- •1.2.1 Формальные грамматики
- •1.2.1.1 Определение формальной грамматики
- •Определение Цепочка (vtvn)* выводима из цепочки в грамматике(обозначается*), если существует последовательность цепочек (n0) такая, что .
- •1.2.1.3 Эквивалентность грамматик
- •1.2.2 Формы Бэкуса - Наура
- •1.2.3 Диаграммы Вирта
- •1.2.5 Механизмы распознавания языков
- •1.2.5.1 Определение распознавателя
- •1.2.5.2 Схема работы распознавателя
- •1.2.5.3 Классификация распознавателей
- •2 Регулярные грамматики и языки
- •2.1 Регулярные выражения
- •2.2 Лемма о разрастании языка
- •2.3 Конечные автоматы
- •2.3.1 Определение конечного автомата
- •2.3.2 Распознавание строк конечным автоматом
- •Существуют следующие способы представления функции переходов: - командный способ.Каждую команду ка записывают в форме , где.
- •2.3.3 Преобразование конечных автоматов
- •2.3.3.1 Преобразование конечного автомата к детерминированному виду
- •Алгоритм Преобразование нка в дка
- •2.3.3.2 Минимизация конечного автомата
- •2.3.3.2.1 Устранение недостижимых состояний ка
- •2.3.3.2.2 Объединение эквивалентных состояний ка Алгоритм Объединение эквивалентных состояний ка
- •2.4 Взаимосвязь способов определения грамматик
- •2.4.1 Построение ка по регулярной грамматике
- •Выход:ка.
- •3 Контекстно-свободные языки и грамматики
- •3.1 Задача разбора
- •3.1.1 Вывод цепочек
- •Определение Цепочка (vtvn)* выводима из цепочки в грамматике(обозначается*), если существует последовательность цепочек (n0) такая, что .
- •3.1.2 Дерево разбора
- •3.1.2.1 Нисходящее дерево разбора
- •3.1.2.2 Восходящее дерево разбора
- •3.1.3 Однозначность грамматик
- •3.2 Преобразование кс-грамматик
- •3.2.1 Проверка существования языка грамматики
- •3.2.2 Устранение недостижимых символов
- •Алгоритм Устранение нетерминалов, не порождающих терминальных строк Вход: кс-грамматика.
- •Алгоритм Устранение недостижимых символов Вход: кс-грамматика.
- •Определим множество достижимых символов z грамматики g, т.Е. Множество
- •3.2.3 Устранение -правил Алгоритм Устранение -правил Вход: кс-грамматика.
- •3.2.4 Устранение цепных правил Алгоритм Устранение цепных правил Вход: кс-грамматика.
- •3.2.5 Левая факторизация правил Алгоритм Устранение левой факторизации правил Вход: кс-грамматика.
- •3.2.6 Устранение прямой левой рекурсии Алгоритм Устранение прямой левой рекурсии Вход: кс-грамматика.
- •3.3 Автомат с магазинной памятью
- •3.3.1 Определение мп-автомата
- •3.3.2 Разновидности мп-автоматов
- •3.3.3 Взаимосвязь мп-автоматов и кс-грамматик
- •3.3.3.1 Построение мп-автомата по кс-грамматике
- •3.3.3.2 Построение расширенного мп-автомата по кс-грамматике
- •3.4 Нисходящие распознаватели языков
- •3.4.1 Рекурсивный спуск
- •3.4.1.1 Сущность метода
- •3.4.1.2 Достаточные условия применимости метода рекурсивного спуска
- •3.4.2 Распознаватели ll(k)-грамматик
- •3.4.2.1 Определение ll(k)-грамматики
- •3.4.2.2 Необходимое и достаточное условие ll(1)-грамматики
- •3.4.2.3 Построение множества first(1, a)
- •3.4.2.4 Построение множества follow(1, a)
- •3.4.2.5 Алгоритм «сдвиг-свертка» для ll(1)-грамматик
- •Шаг 6. Получили следующую цепочку вывода:
- •3.5.1.1.2 Поиск основы сентенции грамматики
- •3.5.1.1.3 Построение множеств l(a) и r(a)
- •3.5.1.1.5 Алгоритм «сдвиг - свертка» для грамматик простого предшествования
- •Шаг 3. Функционирование распознавателя для цепочки (((aa)a)a) показано в таблице 3.9.
- •3.5.1.2 Грамматика операторного предшествования
- •3.5.1.2.1 Определение грамматики операторного предшествования
- •3.5.1.2.2 Построение множеств Lt(a) и Rt(a)
- •3.5.1.2.4 Алгоритм «сдвиг-свертка» для грамматики операторного предшествования
- •3.5.2 Распознаватели lr(k)-грамматик
- •3.6 Соотношение классов кс-грамматик и кс-языков
- •3.6.1 Соотношение классов кс-грамматик
- •3.6.2 Соотношение классов кс-языков
- •4 Принципы построения языка
- •4.1 Лексика, синтаксис и семантика языка
- •4.2 Определение транслятора, компилятора, интерпретатора и ассемблера.
- •4.3 Общая схема работы компилятора
- •4.4 Лексический анализ
- •4.4.1 Задачи лексического анализа
- •4.4.2 Диаграмма состояний с действиями
- •4.4.3 Функция scanner
- •4.5 Синтаксический анализатор программы
- •4.5.1 Задача синтаксического анализатора
- •4.5.2 Нисходящий синтаксический анализ
- •Теорема Достаточные условия применимости метода рекурсивного спуска
- •4.6 Семантический анализ программы
- •4.6.1 Обработка описаний
- •4.6.2 Анализ выражений
- •4.6.3 Проверка правильности операторов
- •4.7 Генерация кода
- •4.7.1 Формы внутреннего представления программы
- •4.7.1.1 Тетрады
- •4.7.1.2 Триады
- •4.7.1.3 Синтаксические деревья
- •4.7.1.4 Польская инверсная запись
- •Составной оператор begin s1; s2;...; Sn end в полиЗе записывается как s1 s2... Sn.
- •4.7.1.5 Ассемблерный код и машинные команды
- •4.7.2 Преобразование дерева операций в код на языке ассемблера
- •4.8 Оптимизация кода
- •4.8.1 Сущность оптимизации кода
- •4.8.2 Критерии эффективности результирующей программы
- •4.8.3 Методы оптимизации кода
- •4.8.4 Оптимизация линейных участков программ
- •4.8.4.1 Свертка объектного кода
- •4.8.4.2 Исключение лишних операций
- •4.8.5 Оптимизация логических выражений
- •4.8.6 Оптимизация циклов
- •4.8.7 Оптимизация вызовов процедур и функций
- •4.8.9 Машинно-зависимые методы оптимизации
- •4.8.9.1 Распределение регистров процессора
- •4.8.9.2 Оптимизация кода для процессоров, допускающих распараллеливание вычислений
- •5 Формальные методы описания перевода
- •5.1 Синтаксически управляемый перевод
- •5.1.1 Схемы компиляции
- •5.1.4 Практическое применение су-схем
- •5.2 Транслирующие грамматики
- •5.2.1 Понятие т-грамматики
- •5.3 Атрибутные транслирующие грамматики
- •5.3.1 Синтезируемые и наследуемые атрибуты
- •5.3.2 Определение и свойства ат-грамматики
- •5.3.3 Формирование ат-грамматики
- •Решение
1 Формальные языки и грамматики
1.1 Основные понятия теории формальных языков
В основе каждого языка лежит алфавит.
Определение Алфавитом V называется конечное множество символов.
Определение Цепочкой в алфавите V называется любая конечная последовательность символов этого алфавита.
Определение Цепочка, которая не содержит ни одного символа, называется пустой цепочкой и обозначается .
Определение Формальное определение цепочки символов в алфавите V:
- цепочка в алфавите V;
если - цепочка в алфавите V и а – символ этого алфавита, то а – цепочка в алфавите V;
- цепочка в алфавите V тогда и только тогда, когда она является таковой в силу утверждений 1) и 2).
Определение Длиной цепочки называется число составляющих ее символов (обозначается ||).
Определение Конкатенацией (сцеплением) цепочек и называется цепочка =, в которой символы данных цепочек записаны друг за другом.
Для любой цепочки справедливо утверждение =.
Определение Степенью n цепочки называется конкатенация n цепочек . (обозначается n).
Для любой цепочки справедливы утверждения 0= и n=n-1=n-1 для n1.
Определение Реверсом (обращением) цепочки называется цепочка R, составленная из символов цепочки , записанных в обратном порядке.
Пример Пусть алфавит V={a, b, c, d}, тогда для цепочек этого алфавита =ab и =bcd будет справедливо ||=2, ||=3, = abbcd, 2=abab, R=dcb.
Обозначим через V* множество, содержащее все цепочки в алфавите V, включая пустую цепочку , а через V+ - множество, содержащее все цепочки в алфавите V, исключая пустую цепочку .
Определение Формальным языком L в алфавите V называют произвольное подмножество множества V*.
Пример Пусть
алфавит двоичных цифр
,
тогда
,
а
.
Задать язык L в алфавите V можно тремя способами:
перечислением всех допустимых цепочек языка (на языке множеств);
указанием способа порождения (генерации) цепочек языка (грамматики, формы Бэкуса-Наура и диаграммы Вирта;
определением метода распознавания цепочек языка (распознаватели).
Пример Язык
L
в алфавите
,
состоящий из пустой строки и всевозможных
строк, каждая из которых содержит строку
нулей и последующую строку единиц той
же длины, можно описать с помощью
формальной системы определения множеств
какL={0n1n
| n0}.
1.2 Способы задания языков
1.2.1 Формальные грамматики
1.2.1.1 Определение формальной грамматики
Формальная грамматика – это математическая система, определяющая язык посредством порождающих правил.
Определение Формальной грамматикой называется четверка вида:
,
где VN - конечное множество нетерминальных символов грамматики (обычно прописные латинские буквы);
VT - множество терминальных символов грамматики (обычно строчные латинские буквы, цифры, и т.п.), VT VN =;
Р – множество правил вывода грамматики, являющееся конечным подмножеством множества (VT VN)+ (VT VN)*; элемент (, ) множества Р называется правилом вывода и записывается в виде (читается: «из цепочки выводится цепочка »);
S - начальный символ грамматики, S VN.
Для записи правил
вывода с одинаковыми левыми частями
вида
используется сокращенная форма записи
.
Пример Грамматика G1=({0, 1}, {A, S}, P1, S), где множество Р состоит из правил вида: 1) S 0A1; 2) 0A 00A1; 3) A.
Определение
Цепочка
(VTVN)*
непосредственно выводима из цепочки
в
грамматике
(обозначается:
),
если
и
,
где
,
и правило вывода
содержится во множествеР.