
- •Лекции по курсу биохимия и молекулярная биология для студентов направления биология
- •Оглавление
- •Введение
- •Модуль 1. Статическая биохимия
- •Лекция 1
- •Строение, свойства, биологическая роль
- •Моно – и олигосахаридов
- •Классификация углеводов
- •Моносахариды
- •Стереоизомерия моносахаридов
- •Представители моносахаридов
- •Олигосахариды
- •Отдельные представители дисахаридов
- •Лекция 2 строение, свойства, биологическая роль
- •Отдельные представители полисахаридов
- •Лекция 3 строение, свойства, биологическая роль простых липидов
- •Классификация
- •Стероиды
- •Желчные кислоты
- •Лекция 4 строение, свойства, биологическая роль сложных липидов
- •Лекция 5 аминокислотный состав белков Белки и их функции
- •Функции белков
- •Элементарный состав белков
- •Методы выделения и очистки белков
- •Аминокислотный состав белков
- •Химические свойства аминокислот
- •Классификация аминокислот, заменимые и незаменимые аминокислоты
- •Лекция 6 уровни структурной организации белков Структурная организация белков
- •Первичная структура белка: методы исследования. Структурные особенности пептидной связи
- •Номенклатура пептидов и полипептидов. Природные пептиды: глутатион, карнозин, ансерин, грамицидин s, окситоцин, энкефалины
- •Отдельные представители пептидов
- •Вторичная структура белков: -спираль, ее основные характеристики, -структура, -изгиб. Роль водородных связей в формировании вторичной структуры. Сверхвторичные (надвторичные) структуры белка
- •Третичная структура белков. Типы нековалентных связей, стабилизирующих третичную структуру. Роль s-s-мостиков в формировании третичной структуры некоторых белков
- •Заимодействия между субъединицами, стабилизирующие четвертичную структуру. Функциональное значение четвертичной структуры белков
- •Лекция 7
- •Физико-химические свойства белков
- •Ионизация, гидратация, растворимость,
- •Осмотические и онкотические свойства, оптические свойства
- •Молекулярная масса и размеры белков. Методы определения молекулярной массы белков. Необходимость применения комплекса методов для точной оценки молекулярной массы белков
- •Денатурация белков
- •Лекция 8 классификация белков. Простые и сложные белки Принципы классификации белков
- •Фибриллярные белки
- •Глобулярные белки
- •Сложные белки
- •Липопротеины
- •Гликопротеины
- •Протеогликаны
- •Фосфопротеины
- •Металлопротеины
- •Нуклеопротеины
- •Хромопротеины
- •Гемоглобин
- •Миоглобин
- •Цитохромы электронтранспортной цепи
- •Хлорофиллы
- •Флавопротеины
- •Лекция 9 сложные белки Гликопротеины
- •Фосфопротеины
- •Липопротеины
- •Металлопротеины
- •Лекция 10 строение, свойства, биологическая роль нуклеотидов
- •Циклические нуклеотиды
- •Лекция 11 строение, свойства, биологическая роль нуклеиновых кислот
- •Рибосомальные рнк
- •Лекция 12 витамины – биологическая роль, классификация. Водорастворимые витамины
- •Витамин в1 (тиамин)
- •Витамин в2 (рибофлавин)
- •Витамин в3 (рр, никотиновая кислота, никотинамид)
- •Витамин в5 (пантотеновая кислота)
- •Витамин в6 (пиридоксин, пиридоксаль, пиридоксамин)
- •Витамин в9 (фолиевая кислота)
- •Витамин в12 (кобалами)
- •Витамин н (биотин)
- •Витамин с (аскорбиновая кислота)
- •Витамин р (рутин)
- •Лекция 13 жирорастворимые витамины Витамин а (ретинол)
- •Витамин d (кальциферол)
- •Витамин е (токоферол)
- •Витамин к (нафтохинон)
- •Лекция 14
- •Ферменты – строение: свойства, механизм действия
- •Понятие о ферментах.
- •Сущность явлений ферментативного катализа
- •Структурная организация ферментов
- •3. Роль металлов в регуляции aктивности ферментов
- •Изоферменты: биологическая роль
- •Механизм действия ферментов
- •Специфичность действия ферментов
- •Стационарная кинетика ферментативных реакций
- •Концентрация субстрата
- •Концентрация фермента
- •Температура
- •Уравнение Михаэлиса-Ментен
- •Единицы ферментов
- •Лекция 15
- •Ингибиторы ферментов
- •Регуляция каталитичекой активности ферментов
- •Изостерическая регуляция
- •Аллостерический контроль активности ферментов
- •Регуляция ферментов ковалентной модификацией
- •Регуляция ферментов ограниченным протеолизом (активация зимогенов)
- •Регуляция активности мультиэнзимных комплексов
- •Классификация и номенклатура ферментов
- •Характеристика отдельных классов ферментов
- •Ферменты в клинической диагностике. Энзимопатии
- •Модуль II. Динамическая биохимия
- •Катаболические, анаболические, амфиболические пути
- •Метаболизм углеводов
- •Расщепление углеводов в пищеварительном тракте
- •Переваривание углеводов в ротовой полости
- •Переваривание углеводов в кишечнике
- •Амилолитические ферменты: характеристика Панкреатическая -амилаза
- •Сахаразо-изомальтазный комплекс
- •Гликоамилазный комплекс
- •Трегалаза
- •Всасывание моносахаридов в тонком кишечнике и их дальнейший транспорт. Глюкозные транспортеры
- •Всасывание моносахаридов в кишечнике
- •Транспорт глюкозы из крови в клетки
- •Лекция 17
- •Анаэробный катаболизм углеводов
- •Анаэробное окисление глюкозы. Гликолиз. Внутриклеточная
- •Локализация процесса
- •Отдельные реакции гликолиза, их термодинамические характеристики. Образование 2,3-дифосфоглицерата в шунте Рапопорта-Люберинга
- •Расщепление гликогена (гликогенолиз). Строение, механизм действия и регуляция гликогенфосфорилазы
- •Спиртовое и молочнокислое брожение
- •Лекция 18
- •Аэробный катаболизм углеводов (часть 1)
- •Аэробный метаболизм пирувата. Митохондрии: структура
- •И энергетические функции
- •Окислительное декарбоксилирование пирувата. Строение
- •Цикл лимонной кислоты. Отдельные реакции цикла, их термодинамическая характеристики. Суммарное уравнение окисления ацетил-CоА в цикле Кребса
- •Лекция 19
- •Аэробный катаболизм углеводов (часть 2)
- •Регуляция цикла Кребса на уровне цитратсинтазы,
- •Изоцитратдегидрогеназы и -кетоглутаратдегидрогеназного комплекса
- •Амфиболическое значение цикла Кребса. Необходимость анаплеротических путей, пополняющих запас компонентов, участвующих в цикле
- •Зависимое от атp и биотина карбоксилирование пирувата: анаплеротический путь синтеза оксалоацетата
- •Пентозофосфатный путь (гексозомонофосфатный шунт)
- •Отдельные реакции пфп, их термодинамические характеристики.
- •Суммарное уравнение пентозофосфатного пути.
- •Регуляция пентозофосфатного пути на уровне
- •Глюкозо-6-фосфатдегидрогеназы
- •Участки перекреста пфп с гликолизом
- •Циклический характер пфп
- •Лекция 20 биосинтез углеводов
- •Глюконеогенез
- •В последующей реакции, катализируемой ферментом фосфоенолпируваткарбоксикиназой, из оксалоацетата образуется фосфоенолпируват. Реакция Mg2-зависимая и донором фосфата служит gtp.
- •Лекция 21 расщепление пищевых и тканевых липидов
- •Катаболизм липидов
- •Всасывание продуктов расщепления липидов
- •Транспорт липидов
- •Метаболизм глицерола
- •Лекция 22 катаболизм жирных кислот
- •Активация жирной кислоты
- •Транспорт ацил-СоА в митохондрии
- •Катаболизм ненасыщенных жирных кислот
- •Катаболизм жирных кислот с нечетным числом атомов углерода
- •Образование кетоновых тел (кетогенез)
- •Кетоновые тела как источники энергии
- •Глиоксилатный цикл
- •Лекция 23 биосинтез жирных кислот и триацилглицеролов
- •Строение синтазы жирных кислот
- •Механизм синтеза жирных кислот
- •Транспорт ацетил-СоА из митохондрий в цитозоль
- •Образование малонил-СоА
- •Наращивание (элонгация) углеродной цепи жирной кислоты
- •Синтез других предельных и непредельных жк
- •Биосинтез триацилглицеролов
- •Лекция 24 биосинтез холестерола и желчных кислот
- •Биосинтез холестерола
- •Регуляция биосинтеза хс
- •Биосинтез желчных кислот
- •Лекция 25
- •Биологическое окисление. Ферменты, участвующие в биологическом окислении
- •Свободное окисление и его биологическая роль. Цитохром р-450
- •Микросомальная система окисления
- •Механизм гидроксилирования
- •Лекция 26
- •Цепь переноса электронов и протонов внутренней мембраны
- •Митохондрий (дыхательная цепь, редокс-цепь). Компоненты
- •Дыхательной цепи: флавопротеины, железосерные белки, коэнзим q, цитохромы в, с1, с, аа3. Топография дыхательных переносчиков
- •В редокс-цепи
- •Убихинон окисленный CoQ
- •Энергетическое значение ступенчатого транспорта электронов от окисляемых субстратов к молекулярному кислороду. Окислительное фосфорилирование в дыхательной цепи
- •Организация компонентов дыхательной цепи в виде четырех
- •Локализация пунктов сопряжения окисления и фосфорилирования в дыхательной цепи на основании редокс-потенциалов, действия специфических ингибиторов (ротенон, амитал, антимицин а, цианид, со, NaN3)
- •Полные и редуцированные дыхательные цепи
- •Лекция 27
- •Строение атp-синтазного комплекса. Механизм образования атp. Обратимость реакции, катализируемой атp-синтазой. Разобщение транспорта электронов и синтеза атp; действие 2,4-динитрофенола
- •Механизм образования атp
- •Окисление цитоплазматического nadh в дыхательной цепи. Глицеролфосфатный и малат-аспартатный челночные механизм
- •Лекция 28 интеграция клеточного метаболизма
- •Основные аспекты регуляции метаболизма
- •Регуляция на уровне транскрипции
- •Аллостерическая регуляция активности ферментов
- •Ковалентная модификация ферментов
- •Гормональная регуляция
- •Посттранскрипционная и посттрансляционная модификация макромолекул
- •Изменение концентрации метаболитов
- •Мембранная регуляция
- •Модуль III. Молекулярная биология лекция 29 репликация днк
- •Точность репликации
- •Репликация днк у эукариот
- •Репаративный синтез днк
- •Лекция 30 транскрипция (биосинтез рнк)
- •Транскрипция у прокариот
- •Инициация транскрипции
- •Элонгация транскрипции
- •Терминация транскрипции
- •Транскрипция у эукариот
- •Механизм индукции на примере Lac-оперона
- •Катаболитная репрессия
- •Лекция 31 тРансляция (биосинтез белка)
- •Роль тРнк в трансляции
- •Аминоацил-тРнк-синтетазы
- •Белоксинтезирующая система клетки
- •Эффективность трансляции
- •Точность белкового синтеза
- •Энергетические затраты на трансляцию
- •Посттрансляционные модификации полипептидной цепи
- •Библиографический список Основная литература
- •Дополнительная литература
Лекция 2 строение, свойства, биологическая роль
ГОМО – И ГЕТЕРОПОЛИСАХАРИДОВ
Полисахариды – это природные высокомолекулярные вещества, состоящие из большого количества остатков моносахаридов (рис.2.1). Полисахариды, в составе которых присутствуют остатки только одного моносахарида, называют гомополисахаридами. Если остатки моносахаридов разные, такие полисахариды называют гетерополисахаридами.
Полисахариды в различных организмах выполняют несколько важных биологических функций:
1) структурная у растений (целлюлоза);
2) защитная у членистоногих (хитин);
3) запасающая (крахмал – у растений; гликоген – у животных и грибов).
Рис. 2.1. Структура гомо- и гетерополисахаридов
Поскольку наиболее распространенными представителями полисахаридов являются крахмал, гликоген и целлюлоза, рассмотрим строение этих веществ подробнее.
Крахмал, широко распространенный резервный полисахарид растений, является наиболее важным углеводным компонентом пищевого рациона. Он содержится в хлоропластах листьев, плодах, семенах и клубнях. Оcoбeнно высоко содержание крахмала в зерновых культурах (до 75% от сухой массы), клубнях картофеля (примерно 65%) и других запасающих частях растений. Крахмал откладывается в форме микроскопических гранул в специальных органеллах – амилопластах. При продолжительном кипячении примерно 15-25% крахмала переходит в раствор в виде коллоида. Этот «растворимый крахмал» носит название «амилоза». Ocтальная часть, амилопектин, нe растворяется даже при очень длительном кипячении. И крахмал, и амилоза построены из остатков α-D-глюкозы, связанных α-(1,4`)-глюкозидными связями. Цепочки молекул крахмала имеют большую молекулярную массу. Молекулярная масса амилозы достигает 160000, а молекулярная масса амилопектина может составлять более 1000000.
Молекулы амилозы имеют вид нитей, а молекулы амилопектина имеют боковые ответвления, расположенные через 24 – 30 глюкозных остатков. Эти ответвления образуются по типу (1 – 6) глюкозидных связей:
Пространственные взаимоотношения между амилозой и амилопектином в растительных гранулах крахмала можно представить следующим образом, см. рис. 2.2.
Рис. 2.2. Пространственные взаимоотношения между амилозой и амилопектином в растительных гранулах крахмала
Гликоген – запасающий полисахарид животных и человека. Цепочки гликогена, как и крахмала, построены из остатков α-D-глюкозы, связанных α-(1,4)-глюкозидными связями. Но ветвление гликогена более частое, в среднем приходится на каждые 8 – 12 остатков глюкозы. Вследствие этого гликоген представляет собой более компактную массу, чем крахмал. Особенно много гликогена содержится в печени, где его количество может достигать 7% от массы всего органа. В гепатоцитах гликоген находится в гранулах большого размера, которые представляют собой кластеры, состоящие из более мелких гранул, являющихся единичными молекулами гликогена и имеющих среднюю молекулярную массу несколько миллионов. Эти гранулы содержат также ферменты, способные катализировать реакции синтеза и реакции распада гликогена.
Поскольку каждое ответвление гликогена оканчивается невосстанавливающим остатком глюкозы, молекула гликогена имеет столько же невосстанавливающих концов, сколько ответвлений, и только один восстанавливающий конец. Ферменты деградации гликогена воздействуют только на невосстанавливающие концы и могут одновременно функционировать на многих ветвях молекулы. Это значительно увеличивает суммарную скорость распада молекулы гликогена на моносахариды.
Для чего необходимо сохранять глюкозу в форме полисахарида? Рассчитано, что гепатоциты содержат столько гликогена, что если бы содержащаяся в нем глюкоза находилась в свободной форме, ее концентрация в клетке составила бы 0,4 М. Это бы обусловило очень высокое осмотическое давление среды, при котором клетка не смогла бы существовать. Концентрация глюкозы в крови обычно составляет 5 мМ. Таким образом, между кровью и цитоплазмой гепатоцита возник бы очень большой градиент концентрации глюкозы, вода из крови стала бы входить внутрь клетки, что привело бы к ее раздутию и разрыву плазматической мембраны. Таким образом, синтез гликогена позволяет не допустить чрезмерного изменения осмотических свойств клетки при хранении значительных количеств глюкозы.
Цeллюлoзa состоит из остатков глюкозы, связанных, в отличие от крахмала и гликогена, в положении β(1→4). Она является самым распространенным органическим соединением в живой природе. Молекулярная масса целлюлозы может составлять 1000000 и более. Природная целлюлоза обладает высокой механической прочностью, устойчива к химическому и ферментативному гидролизу. Эти свойства связаны с конформацией молекул и особенностями надмолекулярной организации. Неразветвленные связи типа β(1→4) приводят к oбpaзoвaнию линейных цепей, которые стабилизированы внутри- и межцепочечными водородными мостиками, образованными гидроксильными группами, см. рис.2.3.
Рис. 2.3. Образование водородных связей в молекуле целлюлозы