Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
120
Добавлен:
08.06.2015
Размер:
3.55 Mб
Скачать

Обезвоживание и обессоливание нефти

а) Водо-нефтяные эмульсии, их основные свойства и классификация

В подавляющем большинстве случаев добыча нефти сопровождается извлечением на поверхность пластовой воды, содержание которой колеблется в очень широком диапазоне (от долей % до 99 % мас.и более). Пластовая вода, как правило, в значительной степени минерализована хлоридами Na,MgиCa(до 2500 мг/л смеси солей даже при наличии в нефти всего 1 % воды), а так же сульфатами и гидрокарбонатами и содержит механические примеси. Кроме того, в самой нефти может содержаться (в виде коллоидного порошка) немалое количество идентичных солей и механических примесей.

В пластовых условиях нефть и вода представляют собой двухфазную непрерывную систему, компоненты которой хотя и граничат друг с другом. Но совершенно не подвержены взаимопроникновению с образованием дисперсного состояния (разумеется, за исключением ничтожной взаимной растворимости).

В то же время, любой из известных способов добычи нефти сопровождается интенсивным перемешиванием в скважине водо-нефтяной смеси, в результате чего происходит диспергирование, приводящее к образованию так называемых водо-нефтяных эмульсий, под которыми понимают уже дисперсную систему, состоящую из двух взаиморастворимых жидкостей, одна из которых (дисперсная фаза) распределена в другой (дисперсионная среда) в виде капель.

Разумеется, подобное диспергирование требует определённых энергетических затрат, которые тем выше, чем глубже диспергирование. Работа, затраченная на диспергирование, преобразуется в так называемую свободную поверхностную энергию, которая концентрируется на поверхности раздела фаз (принцип сохранения энергии) и более известна под названием поверхностного натяжения с размерностью н/м или Дж/м2. Понятно, что работа, затраченная на диспергирование, существенно выше поверхностного натяжения, т.к.подавляющая часть использованной энергии расходуется на побочные процессы и рассеивается в окружающем пространстве.

Поскольку любая система согласно 2-го начала термодинамики всегда стремится к минимуму свободной энергии водо – нефтяные эмульсии представляют собой термодинамически неустойчивые образования, стремящиеся к саморазрушению. Причём, с ростом температуры поверхностное натяжение всегда уменьшается, вследствии ослабления сил молекулярного притяжения. Обусловленного увеличением среднего расстояния между молекулами. Известно так же, что чем больше взаиморастворимы жидкости, образующие эмульсию, тем меньше поверхностное натяжение.

Различают седиментационную и агрегативную устойчивость водо – нефтяных эмульсий.

Под седиментационной устойчивостью понимают способность системы противостоять оседанию или всплытию частиц дисперсной фазы под действием стоксовых сил. Эта устойчивость прямо пропорциональна вязкостным характеристикам дисперсионной среды и обратно пропорциональна разности плотностей нефти и воды, а также квадрату радиуса частиц дисперсной фазы.

Под агрегативной устойчивостью эмульсий понимают способность частиц дисперсной фазы сохранять свои исходные размеры при взаимном столкновении, или столкновениями с границами раздела фаз, или стенками сосуда. Причём, потеря седиментационной устойчивости, приводящая к полному разрушению водо – нефтяных эмульсий, как правило. начинается с коалесценции частиц дисперсной фазы, т.е. с их слияния в агрегаты, состоящие из 2 и более глобул.

Особо подчеркнём, что наблюдающаяся на практике устойчивость водо-нефтяных эмульсий вовсе не противоречит 2 началу термодинамики, ибо даже в самой устойчивой эмульсии непрерывно идут процессы саморазрушения, но их кинетические характеристики могут быть настолько малыми, что человек воспринимает подобную систему как стабильную.

Современные теоретические представления о устойчивости водо – нефтяных эмульсий сконцентрированы в теории Дерягина – Ландау – Фервея – Овербека (так называемая теория ДЛФО), согласно которой относительная стабильность водо – нефтяных эмульсий обеспечивается, во – первых, электростатическим отталкиванием диффузных частей двойного электрического слоя, который образуется при адсорбции ионов на поверхности частиц; во – вторых, образованием на поверхности глобул дисперсной фазы мощной сольватной оболочки из молекул дисперсной среды, удерживаемой двойным электрическим слоем за счет поляризации; в – третьих, образованием на межфазных границах структурно – механических защитных слоёв, способных сопротивляться деформациям и разрушению, а так же способных «залечивать» дефекты защитного слоя, возникающие при соприкосновении частиц дисперсной фазы (расклинивающий эффект Ребиндера); в четвёртых, гидродинамическим сопротивлением вытеснению жидкой дисперсной среды из прослойки между сближающимися частицами. Вклад всех перечисленных факторов в устойчивость водо – нефтяных эмульсий далеко не одинаков. Решающее значение принадлежит образованию структурно – механических защитных слоёв.

Структурно – механические защитные слои создаются за счёт так называемых естественных эмульгаторов и механических примесей. Под естественными эмульгаторами (поверхностно – активными веществами) понимают такие соединения у которых взаимное притяжение между растворенными молекулами и молекулами растворителя меньше, чем взаимное притяжение самих молекул растворителя. В ре­зультате, молекулыэмульгаторов выталкиваются из объёма дисперсионной среды на поверхность частиц дисперсной фазы, где и адсорбируются, а это вызывает понижение свободной поверхностной энергии (поверхностного натяжения), т.е. устойчивость водонефтяной эмульсии повышается. К природным эмульгаторам относятся асфальтены, смолы, парафины, нафтеновые и жирные кислоты, а также эфиры. Обязательным условием строения молекул природных эмульгаторов является их дифильность, т.е. наличие двух частей - полярной группы и непо­лярного углеводородного радикала, имеющих боль­шее сродство с водой и нефтью соответственно. В противном случае, молекулы подобных веществ не смогли бы удержаться на границе раздела нефть-вода, а растворились бы в одной из фаз. Поэтому, эму льгирующее действие подобных соединений тем выше, чем лучше сбалансированы между собой полярные и неполярные части молекул.

Многочисленные механические и мелкодисперсные примеси, добываемые вместе с продукцией скважин, как правило, способны смачиваться и неф­тью и водой. Постепенно адсорбируясь на поверхности раздела фаз (или с внутренней или с наружной стороны частиц дисперсией фазы), эти вещества об­разуют мощную, так называемую «броню», надёжно стабилизирующую водо-нефтяную эмульсию.

Таким образом, для создания структурно-механи ческих защитных слоев необходимо время (от нескольких минут и даже секунд, до величин, порядка 20 часов). Этот период постепенного повышения стаби льности водо-нефтяных эмульсий называется старе­нием. Причём, наиболее быстро стареют разгазируемая и охлаждаемая водо-нефтяная эмульсия, т.к. в этом случае в ней лавинообразно нарастает количество твёрдых коллоидных частиц, прежде всего парафинов.

Существует несколько общепринятых подходов к классификации водо-нефтяных эмульсий:

Согласно первого подхода различают так называемые эмульсии первого рода и эмульсии второго рода. Эмульсии первого рода состоят из дисперсных частиц нефти, распределённых в дисперсионной среде, которой служит вода. Эти системы также называют прямыми и обозначают как Н/В или М/В (масло в воде). Эмульсии второго рода состоят из дисперсных частиц воды, распределённых в дисперсионной среде, которой служит нефть. Эти системы так же называют обратными и обозначают как В/Н или В/М. Установлено, что тип образующейся эмульсии в основном зависит от соотношения объёмов нефти и воды. Дисперсионной средой обычно стремится стать та жидкость, объём которой больше.

Кроме вышеперечисленных основных видов водо-нефтяных эмульсий различают также так называемые множественные эмульсии и эмульсии Пиккеринга. Множественные эмульсии представляют собой глобулы эмульсии одного рода размещенные в эмульсии другого рода, которая, в свою очередь, может быть разбита на глобулы и вновь размещена в эмульсии другого рода и т.д. Подобные эмульсии достаточно редки, характеризуются высокой стойкостью, а их постепенное образование наблюдается, на пример, при попадании нефти на поверхность водоёма (так называемый «шоколадный мусс»), или при накапливании уловленной нефти в нефтеловушках (так называемая ловушечная эмульсия). Эмульсии Пиккеринга характеризуются особо высоким содер­жанием механических примесей, а значит, и особо высокой устойчивостью. Подобные эмульсии образуются, как правило, в технологических аппаратах на границе раздела фаз и более известны под названием промежуточных слоев, накопление которых способно свести массообмен к нулю и полностью нарушить любой технологический процесс.

Согласно второго подхода эмульсии классифицируют по концентрации дисперсной фазы. Различают разбавленные, концентрированные и высоко концентрированные эмульсии. В разбавленных эмульсиях концентрация дисперсной фазы не превышает 0,2 % об,; в концентрированных - 74 % об.; в высоко концентрированных не менее 74 % об.

Согласно третьего подхода эмульсии подразде­ляют на монодисперсные, т.е. состоящие из капель дисперсной фазы одного размера, и полидисперсные, т.е. состоящие из капель различного диаметра, к которым, как правило, и относятся водо-нефтяные эмульсии.

Наконец, согласно четвёртого подхода, эмульсии подразделяют на микрогетерогенные (частицы дис­персной фазы видны в оптический микроскоп) и ультрамикрогетерогенные (частицы дисперсной фа­зы не видны в оптический микроскоп). Водо-нефтя­ные эмульсии относятся к первому типу.

К основным физико-химическим свойствам водо - нефтяных эмульсий относят: дисперсность, вязкость, плотность, электрические свойства и стабильность.

Под дисперсностью водо-нефтяных эмульсий понимают величину обратную среднему диаметру частиц дисперсной фазы. Чем выше дисперсность эму­льсии тем больше её удельная межфазная поверхность (отношение суммарной поверхности капелек к общему их объёму), а, значит, и свободная энергия. Поэтому устойчивость водо-нефтяных эмульсий прямо пропорциональна их дисперсности. При этом, оперируя понятием дисперсности, никогда не следу­ет забывать, что в реальности существует некое распределение капель дисперсной фазы по дисперсности, которое может быть весьма многообразным. Степень дисперсности водо-нефтяной эмульсии опреде­ляется десятками параметров, но в первом прибли­жении можно воспользоваться уравнением Колмогорова А.Н., позволяющим рассчитать так называемый критический (максимальный) диаметр капель дисперсной фазы, способных существовать в данных условиях;

(23)

где:

- поверхностное натяжение системы на гра­нице нефть-вода;

К - коэффициент, учитывающий соотношение вязкостей воды и нефти;

- плотность дисперсионной среды;

- масштаб пульсации параметров;

v - скорость эмульсии.

Изучению вязкости и плотности водо-нефтяных эмульсий было посвящено и до сих пор посвящается огромное количество работ, поскольку эти свойс­тва являются основополагающими для расчета соот ветствующих транспортных систем. Детально эти свойства будут рассмотрены на практических заня­тиях.

Хотя нефть и вода в чистом виде - хорошие диэ­лектрики - проводимость нефти колеблется от 10-10 до 10-15 (Ом.см)-1; а воды от 10-7 до 10-8(Ом.см)-1 -даже незначительная примесь растворимых в воде солей или кислот увеличивает электропроводимость эмульсии В/Н в десятки раз, не говоря уже о эмуль­сии типа Н/В, которая просто становится проводни­ком 2-го рода. При этом, при наложении электрического поля на водо-нефтяную эмульсию типа В/Н, капельки дисперсной фазы располагаются вдоль си­ловых линий, что приводит к резкому увеличению электропроводимости этих эмульсий. Явление это объясняется тем, что капельки воды имеют прибли­зительно в 40 раз большую диэлектрическую проницаемость, чем капельки нефти.

Устойчивость эмульсии определяется временем её существования и выражается очень простой формулой:

(24)

где:

- высота столба эмульсии;

- средняя скорость расслоения эмульсии.

Устойчивость водо-нефтяных эмульсий определяется не только дисперсностью и прочностью защитных оболочек, как сообщалось выше, но так же температу­рой и рН воды. С ростом температуры механическая прочность защитных оболочек, особенно состоящих из парафина и церезина, может быть снижена до нуля.

Увеличение рН значительно изменяет реологические свойства защитных слоев, облегчая их раразрушение.

б) Разрушение водо-нефтяных эмульсий

Любое разрушение водо-нефтяных эмульсий ба­зируется на ослаблении защитных слоев, увеличении размеров капель дисперсной фазы и последую­щего отстоя.

На сегодняшний день известно множество технологических приёмов и технических устройств, позволяющих с помощью определённых воздействий на эмульсию или их комбинации вызвать её полное разрушение. При этом, самым эффективным счита­ется использование так называемых деэмульгаторов, т.е. искусственно синтезированных ПАВ, способных вытеснить с поверхности частиц дисперсной фазы природный эмульгатор и разрушить «броню», но не способных стабилизировать вновь эмульсию любого типа, т.к. его молекулы не обладают структурно-механическими свойствами. Вытеснение же природных эмульгаторов и «брони» протекает в несколько стадий. Сначала молекулы деэмульгатора, обладая намного более высокой поверхностной активностью, адсорбируются на молекулах эмульгато­ров и «брони», резко увеличивая их смачиваемость дисперсионной средой, куда они постепенно и выте­сняются. А освобождённые места тут же заполняются молекулами деэмульгатора.

Количество известных деэмульгаторов уже пере­валило за тысячу и продолжает стремительно нарос тать, что объясняется не только разнообразием фи­зико-химических свойств нефтей и пластовых вод, но и всё расширяющимся набором способов добычи продукции и эксплуатации месторождений, включая бесконечное количество процессов подготовки нефти и воды, осуществляемых в многообразном оборудовании.

Существует три подхода к классификации деэму льгаторов.

Согласно первого подхода, все деэмульгаторы делятся на ионогенные (т.е. образующие ионы в водных растворах) и неионогенные (т.е. не образующие ионов в водных растворах). В основу такого деления положена ионная классификация Шварца и Перри, принятая в 1960 г. III Международным кон­грессом по ПАВ в г. Кёльне.

Ионогенные деэмульгаторы в свою очередь под­разделяются на анионоактивные, катионоактивные и амфотерные.

К анионоактивным относят вещества, молекулы которых при растворении в воде диссоциируют на положительно заряженный катион металла или водорода и носитель поверхностно-активных свойств - отрицательно заряженный гидрофобный анион, в состав которого входит основная углеводородная часть молекулы.

Типичным представителем этого класса являют­ся: НЧК,Алкил-сульфат,Сульфонол-НП,АНП-2,Пентамин - 67и др.

К катионоактивным ПАВ относятся вещества, диссоциирующие в воде на поверхностно активный катион и неактивный или малоактивный анион. В эту относительно малочисленную группу входят, в основном, соли алкиламинов, соли четырёхзамещённого аммония и соли пиридиновых соединений; наприм­ер, Катапин-А.

К амфотерным ПАВ относятся вещества, в моле­куле которых одновременно присутствуют основные и кислотные группы. В зависимости от рН сре­ды эти вещества при диссоциации могут образовы­вать или анионоактивные, или катионоактивные ионы. Примером соединений этого класса могут служить высшие алкиламинокислоты.

Неионогенные деэмудьгаторы, в свою очередь, подразделяются на водо- и нефтерастворимые. При­мерами подобных соединений могут служить: дипроксамин-157; ОП-10; дисольван-4411; прокса-мин-385 и др.

Неионогенные деэмульгаторы применяются иск­лючительно для разрушения эмульсии типа В/Ни они при этом (в отличии от ионогенных) не образу­ют эмульсиюН/В. И хотя эти деэмульгаторы в нес­колько раз дороже, их расход в сотни раз меньше, а эффективность существенно выше практически для любого диапазона изменения физико-химических свойств нефти и воды.

Согласно второго подхода все деэмульгаторы подразделяют на группы в зависимости от области применения.

К первой группе относят деэмульгаторы, применяемые для разрушения водо-нефтяной эмульсии типа В/Н.

Эта группа, в свою очередь, подразделяется на реагенты, получаемые на основе алкилфе-нолформальдегидных смол (АФФС)-фирмы ВАSF; Еххоn Research Еng; Реtrolite Согр.; Нohst.

На ре­агенты, получаемые на основе модифицированных эпоксидных смол -фирмы Нohst; Теchaco Саn.

На реагенты, получаемые на основе кремнийорганических соединений - фирма Goldshmidt.

На реагенты, получаемые на основе азотсодержащих соединений.

Ко второй группе относят деэмульгаторы, применяемые для разрушения водо-нефтяных эмульсий типа Н/В.

Эта группа, в свою очередь, подразделяется на реагенты, получаемые на основе полимериза­ции полиалкилоксидиаминов с диэпоксидами или эпигалогидрином;

получаемые на основе блок-сополимеров, один блок которых представляет собой полиэтаноламин, а другой полипропаноламин;

на основе полимерного катионосодержащего поливинилового спирта;

на основе полиаминовых водорастворимых солей;

на основе продуктов взаимодействия первичных аминосоединений с галогенгидридом и водой;

на основе продуктов взаимодействия полиамидоамина с этилендиамином и эпихлоргидрином;

на основе композиций, составленных из многоатомных спиртов с четвертичными аммониевыми соеди­нениями и т.д.

К третьей группе относят деэмульгаторы, однов­ременно выполняющие роль ингибитора коррозии.

Это, в основном реагенты, получаемые на основе оксиалкилированных полиалкиленполиаминов, а так­же тиазиновые четырёхзамещенные аммониевые соли полиэпигалогидрина.

К четвёртой группе относят деэмулъгаторы, при­меняемые для разрушения водо-нефтяных эмульсий с повышенным содержанием механических приме­сей.

Такие деэмульгаторы состоят, как правило, из двух компонентов. Первый компонент является смачивателем твёрдых частиц, второй- непосредственно поверхностно-активным веществом.

В качестве первого компонента может служить смесь алкилсульфосукцинатов и этоксилированного алкилфенола или алкоксилированный эфир сорбита и жирной кислоты, смешанный сорганосерной кислотойи замещённым иономаммониума, а такжесульфированные соединения. В качестве второго компонента вы ступаютфенольные смолы или смесь оксиалкилированной нонилфенольной смолы и эфира гликоля.Упомянутые деэмульгаторы переводят твёрдые час­тицы из нефти в водяную фазу.

В последнее время, в пятую группу стали вьщелять реагенты-деэмульгаторы, специально созданные для обессоливания водо-нефгяных эмульсий.

Согласно третьего подхода все деэмульгаторы подразделяют на три группы, в зависимости от применяемого растворителя, количество которого в то­варном продукте может достигать 30 - 50 % мас.

К первой группе относят реагенты, в которых в качестве растворителя используется метанол (дипроксамин 157-65М; проксамин НР-71М; прогалит ДЕМ 15/100).

Ко второй группе относят реагенты, в которых в качестве растворителя используется смесь ароматических углеводородов и низших спиртов (СНПХ-44Н; Реапон-1М).

В третью группу входят такие деэмульгаторы как проксанол 305-50; проксанол 186-50; проксамин 385-50; реапон-4в; прогалит НМ 20/40Е с использованием водного метанола.

Разработка реагентов-деэмульгаторов прошла не сколько этапов.

Самыми первыми ПАВ для разрушения водо-нефтяных эмульсий служили неорганические продукты: железный купорос, карбонат натрия, минеральные кислоты и т.п.

Затем, в качестве деэмульгаторов стали применяться щелочные соли карбоновых и нафтеновых кислот, продукты нейтрализации окисленного керосина или газойля.

На третьем этапе появили­сь ПАВ, содержащие сульфогруппы SO2OH , или сульфатную группу OSO2OH.

Принципиально новым этапом в развитии химического деэмульгирования водо-нефтяных эмульсий стало использование в качестве реагентов неионогенных ПАВ, относящих­ся к классу оксиалкиленпроизводных. Эти реагенты получаются путём конденсации окисей алкиленов: этилена, пропилена, бутилена с алкилпроиз водными,содержащими подвижный атом водоро­да (спирты и фенолы). В этих веществах можно достаточно тонко регулировать соотношение величины полярной и неполярной частей молекулы реагента (за счет гидрофильной части).

Наконец, развитие деэмульгаторов в настоящее время связано с использованием неионогенных веществ, в которых в качестве гидрофобной части молекулы применяют нерас­творимые в воде полипропиленгликоли. Этот тип соединений позволяет широко вальировать свойства ПАВ путём изменения молекулярного веса не то­лько гидрофильной, но и гидрофобной части.

Соседние файлы в папке Методички по аппаратам