
- •Методы и средства защиты информации
- •Российская разведка
- •Радиоразведка во время Второй мировой войны
- •Разведка конца ХХ века
- •Советские спецслужбы
- •КГБ СССР
- •ГРУ ГШ ВС СССР
- •Спецслужбы США
- •РУМО (DIA)
- •НУВКР (NRO)
- •НАГК (NIMA)
- •Спецслужбы Израиля
- •Моссад
- •Аман
- •Спецслужбы Великобритании
- •MI5 (Security Service)
- •ЦПС (GCHQ)
- •Спецслужбы ФРГ
- •Спецслужбы Франции
- •ДГСЕ (DGSE)
- •Роль средств технической разведки в XXI веке
- •Сигнал и его описание
- •Сигналы с помехами
- •Излучатели электромагнитных колебаний
- •Низкочастотные излучатели
- •Высокочастотные излучатели
- •Оптические излучатели
- •Образование радиоканалов утечки информации
- •Оценка электромагнитных полей
- •Аналитическое представление электромагнитной обстановки
- •Обнаружение сигналов в условиях воздействия непреднамеренных помех
- •Оценка параметров сигналов в условиях воздействия непреднамеренных помех
- •Физическая природа, среда распространения и способ перехвата
- •Заходовые методы
- •Перехват акустической информации с помощью радиопередающих средств
- •Перехват акустической информации с помощью ИК передатчиков
- •Закладки, использующие в качестве канала передачи акустической информации сеть 220 В и телефонные линии
- •Диктофоны
- •Проводные микрофоны
- •“Телефонное ухо”
- •Беззаходовые методы
- •Аппаратура, использующая микрофонный эффект телефонных аппаратов
- •Аппаратура ВЧ навязывания
- •Стетоскопы
- •Лазерные стетоскопы
- •Направленные акустические микрофоны (НАМ)
- •Физические преобразователи
- •Характеристики физических преобразователей
- •Виды акустоэлектрических преобразователей
- •Индуктивные преобразователи
- •Микрофонный эффект электромеханического звонка телефонного аппарата
- •Микрофонный эффект громкоговорителей
- •Микрофонный эффект вторичных электрочасов
- •Паразитные связи и наводки
- •Паразитные емкостные связи
- •Паразитные индуктивные связи
- •Паразитные электромагнитные связи
- •Паразитные электромеханические связи
- •Паразитные обратные связи через источники питания
- •Утечка информации по цепям заземления
- •Радиационные и химические методы получения информации
- •Классификация каналов и линий связи
- •Взаимные влияния в линиях связи
- •Виды и природа каналов утечки информации при эксплуатации ЭВМ
- •Анализ возможности утечки информации через ПЭМИ
- •Способы обеспечения ЗИ от утечки через ПЭМИ
- •Механизм возникновения ПЭМИ средств цифровой электронной техники
- •Техническая реализация устройств маскировки
- •Устройство обнаружения радиомикрофонов
- •Обнаружение записывающих устройств (диктофонов)
- •Физические принципы
- •Спектральный анализ
- •Распознавание событий
- •Многоканальная фильтрация
- •Оценка уровня ПЭМИ
- •Метод оценочных расчетов
- •Метод принудительной активизации
- •Метод эквивалентного приемника
- •Методы измерения уровня ПЭМИ
- •Ближняя зона
- •Дальняя зона
- •Промежуточная зона
- •Средства проникновения
- •Устройства прослушивания помещений
- •Радиозакладки
- •Устройства для прослушивания телефонных линий
- •Методы и средства подключения
- •Методы и средства удаленного получения информации
- •Дистанционный направленный микрофон
- •Системы скрытого видеонаблюдения
- •Акустический контроль помещений через средства телефонной связи
- •Перехват электромагнитных излучений
- •Классификация
- •Локальный доступ
- •Удаленный доступ
- •Сбор информации
- •Сканирование
- •Идентификация доступных ресурсов
- •Получение доступа
- •Расширение полномочий
- •Исследование системы и внедрение
- •Сокрытие следов
- •Создание тайных каналов
- •Блокирование
- •Помехи
- •Намеренное силовое воздействие по сетям питания
- •Технические средства для НСВ по сети питания
- •Вирусные методы разрушения информации
- •Разрушающие программные средства
- •Негативное воздействие закладки на программу
- •Сохранение фрагментов информации
- •Перехват вывода на экран
- •Перехват ввода с клавиатуры
- •Перехват и обработка файловых операций
- •Разрушение программы защиты и схем контроля
- •Показатели оценки информации как ресурса
- •Классификация методов и средств ЗИ
- •Семантические схемы
- •Некоторые подходы к решению проблемы ЗИ
- •Общая схема проведения работ по ЗИ
- •Классификация технических средств защиты
- •Технические средства защиты территории и объектов
- •Акустические средства защиты
- •Особенности защиты от радиозакладок
- •Защита от встроенных и узконаправленных микрофонов
- •Защита линий связи
- •Методы и средства защиты телефонных линий
- •Пассивная защита
- •Приборы для постановки активной заградительной помехи
- •Методы контроля проводных линий
- •Защита факсимильных и телефонных аппаратов, концентраторов
- •Экранирование помещений
- •Защита от намеренного силового воздействия
- •Защита от НСВ по цепям питания
- •Защита от НСВ по коммуникационным каналам
- •Основные принципы построения систем защиты информации в АС
- •Программные средства защиты информации
- •Программы внешней защиты
- •Программы внутренней защиты
- •Простое опознавание пользователя
- •Усложненная процедура опознавания
- •Методы особого надежного опознавания
- •Методы опознавания АС и ее элементов пользователем
- •Проблемы регулирования использования ресурсов
- •Программы защиты программ
- •Защита от копирования
- •Программы ядра системы безопасности
- •Программы контроля
- •Основные понятия
- •Немного истории
- •Классификация криптографических методов
- •Требования к криптографическим методам защиты информации
- •Математика разделения секрета
- •Разделение секрета для произвольных структур доступа
- •Определение 18.1
- •Линейное разделение секрета
- •Идеальное разделение секрета и матроиды
- •Определение 18.3
- •Секретность и имитостойкость
- •Проблема секретности
- •Проблема имитостойкости
- •Безусловная и теоретическая стойкость
- •Анализ основных криптографических методов ЗИ
- •Шифрование методом подстановки (замены)
- •Шифрование методом перестановки
- •Шифрование простой перестановкой
- •Усложненный метод перестановки по таблицам
- •Усложненный метод перестановок по маршрутам
- •Шифрование с помощью аналитических преобразований
- •Шифрование методом гаммирования
- •Комбинированные методы шифрования
- •Кодирование
- •Шифрование с открытым ключом
- •Цифровая подпись
- •Криптографическая система RSA
- •Необходимые сведения из элементарной теории чисел
- •Алгоритм RSA
- •Цифровая (электронная) подпись на основе криптосистемы RSA
- •Стандарт шифрования данных DES
- •Принцип работы блочного шифра
- •Процедура формирования подключей
- •Механизм действия S-блоков
- •Другие режимы использования алгоритма шифрования DES
- •Стандарт криптографического преобразования данных ГОСТ 28147-89
- •Аналоговые скремблеры
- •Аналоговое скремблирование
- •Цифровое скремблирование
- •Критерии оценки систем закрытия речи
- •Классификация стеганографических методов
- •Классификация стегосистем
- •Безключевые стегосистемы
- •Определение 20.1
- •Стегосистемы с секретным ключом
- •Определение 20.2
- •Стегосистемы с открытым ключом
- •Определение 20.3
- •Смешанные стегосистемы
- •Классификация методов сокрытия информации
- •Текстовые стеганографы
- •Методы искажения формата текстового документа
- •Синтаксические методы
- •Семантические методы
- •Методы генерации стеганограмм
- •Определение 20.4
- •Сокрытие данных в изображении и видео
- •Методы замены
- •Методы сокрытия в частотной области изображения
- •Широкополосные методы
- •Статистические методы
- •Методы искажения
- •Структурные методы
- •Сокрытие информации в звуковой среде
- •Стеганографические методы защиты данных в звуковой среде
- •Музыкальные стегосистемы
Сокрытие данных в изображении и видео |
467 |
|
|
чения к обеим величинам, алгоритм гарантирует что |Bi(u1, v1) – Bi(u2,v2)| > x, |
где |
x > 0. Чем больше x, тем алгоритм будет более устойчивым к сжатию, но при этом качество изображения ухудшается. После соответствующей корректировки коэффициентов выполняется обратное ДКП.
Извлечение скрытой информации проводится путем сравнения выбранных двух коэффициентов для каждого блока.
Широкополосные методы
Широкополосные методы передачи применяются в технике связи для обеспечения высокой помехоустойчивости и затруднения процесса перехвата. Суть широкополосных методов состоит в значительном расширении полосы частот сигнала, более чем это необходимо для передачи реальной информации. Расширение диапазона выполняется в основном посредством кода, который не зависит от передаваемых данных. Полезная информация распределяется по всему диапазону, поэтому при потере сигнала в некоторых полосах частот в других полосах присутствует достаточно информации для ее восстановления.
Таким образом, применение широкополосных методов в стеганографии затрудняет обнаружение скрытых данных и их удаление. Цель широкополосных методов подобна задачам, которые решает стегосистема: попытаться “растворить” секретное сообщение в контейнере и сделать невозможным его обнаружение. Поскольку сигналы, распределенные по всей полосе спектра, трудно удалить, стеганографические методы, построенные на основе широкополосных методов, являются устойчивыми к случайным и преднамеренным искажениям.
Для сокрытия информации применяют два основных способа расширения спектра:
•с помощью псевдослучайной последовательности, когда секретный сигнал, отличающийся на константу, модулируется псевдослучайным сигналом;
•с помощью прыгающих частот, когда частота несущего сигнала изменяется по некоторому псевдослучайному закону.
Рассмотрим один из вариантов реализации широкополосного метода. В качестве контейнера используется полутоновое изображение размером N×М. Все пользователи скрытой связи имеют множество l(m) изображений ϕi размером N×М, которое используется в качестве стегоключа. Изображения ϕi ортогональны друг другу, т.е.
N |
N |
M |
M |
ϕi ϕj =∑y=1∑ϕi(x,y)ϕj(x,y) = Giδij, где Gi = ∑y=1∑ϕi2(x,y), δij — дельта- |
|
x=1 |
x=1 |
функция.
Для сокрытия сообщения m необходимо сгенерировать стегосообщение E(x, y) в виде изображения, формируя взвешенную сумму

468 Глава 20. Стеганография
E(x, y) = ∑miϕi(x, y)
i
Затем, путем формирования поэлементной суммы обоих изображений, встроить секретную информацию E в контейнер C: S(x, y)=C(x, y) + E(x, y).
В идеале, контейнерное изображение C должно быть ортогонально ко всем ϕi (т.е. <C,ϕi> =0), и получатель может извлечь i-й бит сообщения mi, проектируя стегоизображение S на базисное изображение ϕi:
<S,ϕi> = <C,ϕi> + <∑j mjϕj, ϕi>= ∑j mj<ϕjϕi> = Gi mi (20.1)
Секретная информация может быть извлечена путем вычисления mi = <C,ϕi>/Gi. Заметим, что на этом этапе нет нужды в знании исходного контейнера C. Однако на практике контейнер C не будет полностью ортогонален ко всем изображениям ϕi, поэтому в соотношение (20.1) должна быть введена величина погрешности (C, ϕi) = Ci,
т.е. (C, ϕi) = Ci + Gimi.
Покажем, что при некоторых допущениях, математическое ожидание Ci равно нулю. Пусть C и ϕi две независимые случайные величины размером N×M. Если предположить, что все базисы изображений не зависят от передаваемых сообщений, то:
|
N |
|
|
|
|
M |
|
|
|
→ |
[ Ci] = ∑∑j=1 |
→ |
→ |
|
EE |
E [C(x, y)] EE |
[ϕi(x, y)] = 0 |
i=1
Таким образом, математическое ожидание величины погрешности <C,ϕi>=0. Поэтому операция декодирования заключается в восстановлении секретного сообщения путем проектирования стегоизображения S на все функции ϕi: Si = <S,ϕi> = Ci + Gimi. Если математическое ожидание Ci равно нулю, то Si ≈ Gimi. Если секретные сообщения были закодированы как строки –1 и 1 (вместо простого использования двоичных строк), значения mi могут быть восстановлены с помощью функции:
–1, при Si < 0
mi = sign(Si) = 0, при Si = 0 , при условии, что Gi>>01, при Si > 0
Если mi = 0, то скрываемая информация будет утеряна. При некоторых условиях значение | Ci| может возрасти настолько (хотя его математическое ожидание равно нулю), что извлечение соответствующего бита станет невозможным. Однако это происходит редко, а возможные ошибки можно исправлять, применяя корректирующие коды.
Основное преимущество широкополосных стеганометодов — это сравнительно высокая устойчивость к искажениям изображения и разного вида атакам, так как скрываемая информация распределена в широкой полосе частот, и ее трудно удалить без полного разрушения контейнера. Искажения стегоизображения увеличивают значение Ci и, если | Ci| > | Gimi|, то скрытое сообщение не пострадает.

Сокрытие данных в изображении и видео 469
Статистические методы
Статистические методы скрывают информацию путем изменения некоторых статистических свойств изображения. Они основаны на проверке статистических гипотез. Суть метода заключается в таком изменении некоторых статистических характеристик контейнера, при котором получатель сможет отличить модифицированное изображение от не модифицированного.
Данные методы относятся к “однобитовым” схемам, т.е. ориентированы на сокрытие одного бита секретной информации. l(m)-разрядная статистическая стегосистема образуется из множества одноразрядных путем разбиения изображения на l(m) непересекающихся блоков B1, ..., Bl(m). При этом секретный бит сообщения mi встраивается в i-й блок контейнера. Обнаружение спрятанного бита в блоке производится с помощью проверочной функции, которая отличает модифицированный блок от немодифицированного:
1, если блок Bi был модифицирован f(Bi) = 0, в противном случае
Основная задача при разработке статистического метода — это создание соответствующей функции f. Построение функции f делается на основе теории проверки статистических гипотез (например: основной гипотезы “блок Bi не изменен“ и альтернативной — “блок Bi изменен”). При извлечении скрытой информации необходимо последовательно применять функцию f ко всем блокам контейнера Bi. Предположим, что известна статистика распределения элементов немодифицированного блока изображения h(Bi). Тогда, используя стандартные процедуры, можно проверить, превышает ли статистика h(Bi) анализируемого блока некоторое пороговое значение. Если не превышает, то предполагается, что в блоке хранится бит 0, в противном случае — 1.
Зачастую статистические методы стеганографии сложно применять на практике. Вопервых, необходимо иметь хорошую статистику h(Bi), на основе которой принимается решение о том, является ли анализируемый блок изображения измененным или нет. Вовторых, распределение h(Bi) для “нормального” контейнера должно быть заранее известно, что в большинстве случаев является довольно сложной задачей.
Рассмотрим пример статистического метода. Предположим, что каждый блок контейнера Bi представляет собой прямоугольник пикселей p(i)n,m. Пусть имеется псевдослучайная двоичная модель того же размера S = { S(i)n,m }, в которой количество единиц и нулей совпадает. Модель S в данном случае представляет собой стегоключ. Для со-
крытия информации каждый блок изображения Bi делится на два равных подмножества
Ci и Di, где Ci = { p(i)n,m Bi | Sn,m = 1} и Di = { p(i)n,m Bi | Sn,m = 0}. Затем ко всем
пикселям множества Ci добавляется значение k > 0. Для извлечения сообщения необходимо реконструировать подмножества Ci и Di и найти различие между ними. Если блок содержит сообщение, то все значения подмножества Ci будут больше, чем соответствующие значения на этапе встраивания сообщения. Если предположить, что все пиксели Ci и Di независимые, случайно распределенные величины, то можно применить статистический тест:

470 Глава 20. Стеганография
|
— |
— |
^ |
Var[Ci] – Var[Di] |
|
|
qi = |
Ci |
– Di |
|
|||
|
^ |
|
, где σi = |
|S|/2 |
, |
|
|
|
σi |
|
|
|
|
—
где Ci — среднее значение всех пикселей множества Ci, а Var[Ci] — оценка дисперсии случайных переменных в Ci. В соответствии с центральной предельной теоремой, статистика q будет асимптотически стремиться к нормальному распределению N(0, 1). Если сообщение встроено в блок изображения Bi, то математическое ожидание q будет больше нуля. Таким образом, i-й бит секретного сообщения восстанавливается путем проверки статистики qi блока Bi на равенство нулю.
Методы искажения
Методы искажения, в отличие от предыдущих методов, требуют знания о первоначальном виде контейнера. Схема сокрытия заключается в последовательном проведении ряда модификаций контейнера, которые выбираются в соответствии с секретным сообщением. Для извлечения скрытых данных необходимо определить все различия между стеганограммой и исходным контейнером. По этим различиям восстанавливается последовательность модификаций, которые выполнялись при сокрытии секретной информации. В большинстве приложений такие системы бесполезны, поскольку для извлечения данных необходимо иметь доступ к набору первоначальных контейнеров: если противник также будет иметь доступ к этому набору, то он сможет легко обнаружить модификации контейнера и получить доказательства скрытой переписки. Таким образом, основным требованием при использовании таких методов является необходимость распространения набора исходных контейнеров между абонентами сети через секретный канал доставки.
Методы искажения легко применимы к цифровым изображениям. Как и в методах замены, для сокрытия данных выбирается l(m) различных пикселей контейнера, которые используются для сокрытия информации. Такой выбор можно произвести, используя датчик случайных чисел (или перестановок). При сокрытии бита 0 значение пикселя не изменяется, а при сокрытии 1 к цвету пикселя прибавляется случайное значение х. Хотя этот подход подобен методу замены, имеется одно существенное различие: в методе LSB значение выбранного цвета не обязательно равняется секретному биту сообщения, а в методах искажения при сокрытии нулевого бита не происходит никаких изменений. Помимо этого, значение х может быть выбрано так, что будут сохраняться статистические свойства контейнера. Для извлечения скрытых данных необходимо провести сравнение всех l(m) выбранных пикселей стеганограммы с соответствующими пикселями исходного контейнера. Если i-й пиксель будет отличаться, то это свидетельствует о том, что в скрытом сообщении был единичный бит, иначе — нулевой.
Существует еще один подход к реализации метода искажения изображения при сокрытии данных. В соответствии с данным методом при вставке скрываемых данных делается попытка скорее изменить порядок появления избыточной информации в контейнере, чем изменить его содержимое. При сокрытии данных составляется определенный “список пар” пикселей, для которых отличие будет меньше порогового. Этот список иг-