
- •Конспект лекций по общему курсу материаловедения
- •Для студентов заочной формы обучения
- •Учебное пособие
- •Москва 2013
- •Введение.
- •Глава 1. Теория сплавов.
- •1.1. Механические свойства сплавов и методы их определения.
- •1.2. Атомно-кристаллическая структура металлов.
- •1.3. Дефекты кристаллического строения металлов.
- •1.4. Закономерности кристаллизации металлов и сплавов.
- •1.5. Микроструктура сплавов.
- •1.6. Характеристика фаз и структурных составляющих.
- •1.7. Диаграммы состояния.
- •1.8. Фазы и структурные составляющие в сплавах Fe-c.
- •1.9. Влияние химического состава и структуры на свойства сталей и чугунов.
- •1.10. Классификация, маркировка и применение углеродистых сталей.
- •1.11. Применение чугунов.
- •Контрольные вопросы.
- •Литература.
- •Глава 2. Теория термической обработки.
- •2.1. Критические температуры при термообработке стали.
- •2.2. Превращения при нагреве стали.
- •Перегрев и пережог.
- •2.3. Превращения в стали при непрерывном охлаждении.
- •2.4. Образование структур перлитного типа.
- •2.5. Промежуточное превращение.
- •2.6. Мартенситное превращение.
- •2.6.1.Особенности мартенситного превращения.
- •2.6.2. Свойства мартенсита.
- •2.7. Превращения при отпуске.
- •2.7.1. Свойства стали после отпуска.
- •2.7.2. Отпускная хрупкость.
- •2.7.3. Старение.
- •2.8. Прокаливаемость и закаливаемость стали.
- •Контрольные вопросы.
- •Литература.
- •Глава 3. Технология термической обработки.
- •3.1. Технология объемной термообработки стали.
- •3.1.1. Отжиг 1-го рода.
- •3.1.2. Отжиг 2-го рода.
- •3.1.3. Нормализация.
- •3.1.4. Дефекты отжига и нормализации.
- •3.1.5. Закалка.
- •3.1.6. Дефекты закалки.
- •3.2. Поверхностная закалка.
- •3.3. Химико-термическая обработка (хто).
- •3.3.1. Цементация.
- •3.3.2. Азотирование.
- •3.3.3. Нитроцементация.
- •Контрольные вопросы.
- •Глава 4. Машиностроительные материалы.
- •4.1. Легированные конструкционные стали.
- •4.2. Специальные стали и сплавы.
- •4.3. Литейные сплавы.
- •4.4. Неметаллические материалы.
- •4.4.1. Пластмассы.
- •4.4.2. Резины.
- •4.4.3. Клеи и герметики.
- •4.5. Композиционные материалы.
- •Контрольные вопросы.
- •Литература
- •Глава 5. Порошковые материалы.
- •5.1. Технология производства металлических порошков.
- •Основными элементами технологии порошковой металлургии являются:
- •5.2. Свойства металлических порошков.
- •5.3. Классификация порошковых сталей.
- •5.4. Порошковые углеродистые конструкционные стали.
- •5.5. Порошковые легированные конструкционные стали.
- •Медистые порошковые стали.
- •Порошковые стали, легированные никелем.
- •Порошковые железомедноникелевые стали.
- •Порошковые молибденовые стали.
- •Хромистая порошковая сталь.
- •Марганцовистые порошковые стали.
- •Сложнолегированные порошковые конструкционные стали.
- •5.6. Порошковые стали инструментального назначения.
- •5.7. Порошковые стали специального назначения.
- •5.8. Антифрикционные материалы на основе железа.
- •5.9 Термическая обработка порошковых сталей.
- •5.10. Свойства и применение порошковых сплавов.
- •Применение порошковых материалов
- •Методами порошковой металлургии получают:
- •Применение и состав порошковых сплавов
- •5.11. Производство деталей из порошковых материалов.
- •5.12. Эффективность технологии порошковой металлургии.
- •Контрольные вопросы.
- •Литература.
1.8. Фазы и структурные составляющие в сплавах Fe-c.
В этих сплавах фазаминазывают жидкий раствор, феррит, аустенит, цементит и свободный углерод в виде графита (в структуре графитизированных чугунов). Механические смеси – ледебурит и перлит называют структурными составляющими. Твердые фазы существуют в структуре сталей и чугунов как самостоятельно, так и в составе механических смесей – ледебурита и перлита.
Наименее прочной (σв≈200МПа) и наиболее пластичной (δ=40%) из твердых фаз является феррит [Ф] – ограниченный (до 0,03%С) твердый раствор внедрения углерода в Feα.
Аустенит [А] – ограниченный (до 2,14%С) твердый раствор внедрения углерода в Feγ; пластичен (δ≈35%), но более прочен, чем феррит.
Цементит [Ц] – карбид железа Fe3C, малопрочен (σв≈30МПа), очень тверд (HV800) и хрупок (δ=0%). Цементит, выделяющийся при кристаллизации из жидкости, называют первичным (ЦΙ), выделяющийся из аустенита – вторичным (ЦΙΙ); из феррита - третичным (ЦΙΙΙ).
Ледебурит – до 727°С механическая смесь аустенита и цементита (Л), при температурах ниже 727°С – смесь перлита и цементита (Л*). В ледебурите цементит образует сплошную матрицу, в которой размещены участки перлита. Поэтому ледебурит высокотверд (>600НВ) и достаточно хрупок.
Перлит – механическая смесь феррита и цементита, имеющая чаще пластинчатое строение. Является прочной структурной составляющей: σв≈850МПа,σ0,2=450МПа, δ≤15%, твердость НВ 180-220.
1.9. Влияние химического состава и структуры на свойства сталей и чугунов.
Структура и свойства сталей зависят от содержания в стали углерода и неизбежных примесей: марганца, серы, фосфора, кремния, кислорода, азота, водорода. Основное влияние на структуру и свойства сталей оказывает углерод. С увеличением содержания углерода в структуре сталей возрастает количество перлита и цементита (рис.13).
|
|
| |
а)
|
б)
|
в)
| |
Рис.13. |
Структура стали при комнатной температуре: а – доэвтектоидная; б – эвтектоидная; в – заэвтектоидная. |
Увеличение количества перлита и цементита в структуре сталей обусловливает возрастание их твердости и прочности одновременно со снижением пластичности и вязкости. В результате снижается способность сталей деформироваться в горячем и особенно в холодном состоянии. С увеличением содержания углерода также ухудшается свариваемость стали.
Марганец и кремний – полезные примеси, вводятся в сталь для раскисления и сохраняются в ее составе в количестве соответственно 0,8 и 0,4%. Марганец предохраняет сталь от красноломкости (хрупкости при горячей обработке давлением). Красноломкость вызывается серой, а хладноломкость (снижение вязкости при понижении температуры) – фосфором. Поэтому сера и фосфор считаются вредными примесями и их содержание в стали строго регламентируют. Кислород, азот и водород также вредные примеси, они снижают пластичность стали и повышают ее склонность к хрупкому разрушению, их содержание в стали также строго ограничивают.
Структура и свойства чугунов зависят главным образом от содержания углерода, кремния и скорости охлаждения отливок. Увеличение содержания углерода (больше 2,4%) и кремния (больше 1%), а также уменьшение скорости охлаждения отливок способствует процессу графитизации и получению серых (по цвету излома) чугунов с пластинчатым графитом. При данном содержании углерода и кремния графитизация тем полней, чем меньше скорость охлаждения (больше сечение отливок). Чем полней графитизация, тем больше в структуре чугуна свободного углерода (графита), и тем меньше связанного углерода, входящего в состав металлической основы. В зависимости от количества связанного углерода различают ферритную (С связ.≤0,03%), феррито-перлитную (0,03<Ссвяз.<0,8%), перлитную (С связ.=0,8%) структуру металлической основы чугунов.
По химическому составу различают обычные и легированные серые чугуны. Обычные серые чугуны содержат 2,4…3,7%С, до 3%Si, до 1,1%Mn, 0,2…0,3%Р, до 0,15%S. Последние три элемента являются неизбежными примесями. Марганец затрудняет графитизацию, фосфор улучшает жидкотекучесть, сера ее ухудшает и увеличивает усадку, и по этой причине сера считается вредной примесью.
Серые чугуны малопрочны и хрупки, что объясняется отрицательным влиянием пластинчатого графита. Наименее прочными(σв≈150…180МПа) являются ферритные серые чугуны, а наиболее прочными – серые чугуны с перлитной матрицей (σв≈300…350МПа). Разновидностью серых чугунов являются чугуны с вермикулярным графитом (ЧВГ).
Прочность чугунов можно повысить, изменив форму графита путем модифицирования магнием или его лигатурами (сплавами Mg с Ni и другими металлами). Модификаторы вводят в жидкий чугун в количестве 0,02…0,08%, и под их воздействием графит принимает не пластинчатую, а гораздо более компактную шаровидную форму. Чугуны с шаровидным графитом называют высокопрочными(σв=350…1000МПа); дисперсия прочности обусловлена различием в структуре металлической основы.
При содержании кремния не более 1…1,5% и уменьшении толщины отливок (увеличении скорости охлаждения при кристаллизации) образуется структура белого чугуна, в котором весь углерод находится в связанном состоянии и входит в состав цементита и ледебурита. Большое количества цементита в структуре белых чугунов обусловливает их высокую твердость и хрупкость, что исключает возможность их обработки резанием или давлением.
Поэтому белые чугуны применяют в основном как передельные материалы. В частности, из доэвтектических белых чугунов изготавливают тонкостенные отливки сечением не более 50мм, в которых при последующем отжиге формируется структура ковкого чугуна с хлопьевидным графитом. Отжиг ведут в одну или две стадии. В первом случае получают перлитный ковкий чугун, а во втором – ковкий чугун с ферритной металлической основой. Ковкие чугуны (название «ковкий» является условным) в отличие от серых чугунов обладают более высокой пластичностью (δ≈6…12%) и прочностью (σв=300…800МПа). Это объясняется тем, что хлопьевидный графит меньше ослабляет металлическую основу по сравнению с пластинчатым графитом, а также отсутствием литейных напряжений, которые снимаются при отжиге.
.