
- •Конспект лекций по общему курсу материаловедения
- •Для студентов заочной формы обучения
- •Учебное пособие
- •Москва 2013
- •Введение.
- •Глава 1. Теория сплавов.
- •1.1. Механические свойства сплавов и методы их определения.
- •1.2. Атомно-кристаллическая структура металлов.
- •1.3. Дефекты кристаллического строения металлов.
- •1.4. Закономерности кристаллизации металлов и сплавов.
- •1.5. Микроструктура сплавов.
- •1.6. Характеристика фаз и структурных составляющих.
- •1.7. Диаграммы состояния.
- •1.8. Фазы и структурные составляющие в сплавах Fe-c.
- •1.9. Влияние химического состава и структуры на свойства сталей и чугунов.
- •1.10. Классификация, маркировка и применение углеродистых сталей.
- •1.11. Применение чугунов.
- •Контрольные вопросы.
- •Литература.
- •Глава 2. Теория термической обработки.
- •2.1. Критические температуры при термообработке стали.
- •2.2. Превращения при нагреве стали.
- •Перегрев и пережог.
- •2.3. Превращения в стали при непрерывном охлаждении.
- •2.4. Образование структур перлитного типа.
- •2.5. Промежуточное превращение.
- •2.6. Мартенситное превращение.
- •2.6.1.Особенности мартенситного превращения.
- •2.6.2. Свойства мартенсита.
- •2.7. Превращения при отпуске.
- •2.7.1. Свойства стали после отпуска.
- •2.7.2. Отпускная хрупкость.
- •2.7.3. Старение.
- •2.8. Прокаливаемость и закаливаемость стали.
- •Контрольные вопросы.
- •Литература.
- •Глава 3. Технология термической обработки.
- •3.1. Технология объемной термообработки стали.
- •3.1.1. Отжиг 1-го рода.
- •3.1.2. Отжиг 2-го рода.
- •3.1.3. Нормализация.
- •3.1.4. Дефекты отжига и нормализации.
- •3.1.5. Закалка.
- •3.1.6. Дефекты закалки.
- •3.2. Поверхностная закалка.
- •3.3. Химико-термическая обработка (хто).
- •3.3.1. Цементация.
- •3.3.2. Азотирование.
- •3.3.3. Нитроцементация.
- •Контрольные вопросы.
- •Глава 4. Машиностроительные материалы.
- •4.1. Легированные конструкционные стали.
- •4.2. Специальные стали и сплавы.
- •4.3. Литейные сплавы.
- •4.4. Неметаллические материалы.
- •4.4.1. Пластмассы.
- •4.4.2. Резины.
- •4.4.3. Клеи и герметики.
- •4.5. Композиционные материалы.
- •Контрольные вопросы.
- •Литература
- •Глава 5. Порошковые материалы.
- •5.1. Технология производства металлических порошков.
- •Основными элементами технологии порошковой металлургии являются:
- •5.2. Свойства металлических порошков.
- •5.3. Классификация порошковых сталей.
- •5.4. Порошковые углеродистые конструкционные стали.
- •5.5. Порошковые легированные конструкционные стали.
- •Медистые порошковые стали.
- •Порошковые стали, легированные никелем.
- •Порошковые железомедноникелевые стали.
- •Порошковые молибденовые стали.
- •Хромистая порошковая сталь.
- •Марганцовистые порошковые стали.
- •Сложнолегированные порошковые конструкционные стали.
- •5.6. Порошковые стали инструментального назначения.
- •5.7. Порошковые стали специального назначения.
- •5.8. Антифрикционные материалы на основе железа.
- •5.9 Термическая обработка порошковых сталей.
- •5.10. Свойства и применение порошковых сплавов.
- •Применение порошковых материалов
- •Методами порошковой металлургии получают:
- •Применение и состав порошковых сплавов
- •5.11. Производство деталей из порошковых материалов.
- •5.12. Эффективность технологии порошковой металлургии.
- •Контрольные вопросы.
- •Литература.
4.4.2. Резины.
Резиновые материалы (резины) являются продуктами специальной обработки (вулканизации) смеси каучука, серы и различных добавок (до 350 наименований). Главным компонентом любой резины является каучук -натуральный или синтетический; на основе синтетического каучука выпускают более 90% резин. Каучук придает резине высокие эластические свойства (δдо 1000%), за счет чего резина способна к большим деформациям, которые почти полностью обратимы.
Каучук является полимером с линейной структурой макромолекул, чем и объясняется его высокая эластичность. При вулканизации между нитевидными молекулами каучука формируются поперечные химические связи и образуется пространственно-сетчатая структура резины. Вулканизацией называют термическую обработку при 150°С в горячем воздухе или в атмосфере насыщенного водяного пара, в ходе которой каучук взаимодействует с серой.
Частота сетчатой структуры зависит от количества серы, вводимой в состав резины. При количестве серы в пределах 1…5% образуется редкосетчатая структура, которая придает резине высокую эластичность и мягкость. С увеличением количества серы сетчатая структура становится более частой, а резина менее эластичной и более твердой. При содержании серы ≈30% образуется твердый материал – эбонит.
По назначению резины подразделяют на две основные группы: резины общего назначения, отличающиеся низкой стойкостью к горюче-смазочным материалам, и резины специального назначения. Эти резины подразделяются на маслобензостойкие, теплостойкие, износостойкие. Маслобензостойкие резины получают на основе синтетических нитрильных каучуков (СКН), теплостойкие – на основе синтетических теплостойких каучуков (СКТ), износостойкие – на основе полиуретановых каучуков (СКУ). К группе специальных относят также резины для уплотнений, силовых деталей (шестерни, муфты, шарниры), опор скольжения. В таблице 8 приведены данные о свойствах и области применения некоторых типов резин.
Таблица 8.
Данные о свойствах и области применения некоторых типов резин.
Название резины (по типу каучука) |
Сопротивление старению |
Механические свойства |
Рабочая температура (°С) |
Область применения | |
σВР, МПа |
δ, % | ||||
Изопреновая (СКИ) |
Нестойкая |
10…25 |
300…800 |
От -60 до +130 |
Резиновые изделия общего назначения, амортизаторы, виброизоляторы |
Бутадиен-стирольная (СКС) |
>> |
10…30 |
250…800 |
От -60 до +130 |
Автомобильные шины |
Бутадиен-нитрильная (СКН) |
>> |
8…20 |
До 300 |
От -35 до +180 |
Маслобензостойкие прокладки и манжеты |
Силоксановая (СКТ) |
Стойкая |
10…20 |
До 300 |
От -60 до +300 |
Теплостойкие уплотнения |
Силоксановая (СКТФ) |
>> |
10…20 |
До 300 |
От -100 до +250 |
Хладостойкие уплотнения |
Полиуретановая (СКУ) |
>> |
20…60 |
200…800 |
От -30 до +130 |
Автомобильные шины |
Фторокаучуковая (СКФ) |
>> |
10…25 |
100…450 |
От -25 до +300 |
Маслобензостойкие уплотнения |
В интервале рабочих температур эластичность резины меняется: уменьшается при отрицательных температурах, а также при температуре выше 100 °С (кроме теплостойких резин), когда ускоряется процесс старения.
Массовое производство резинотехнических изделий осуществляют с помощью высокопроизводительного автоматизированного оборудования.
Основными этапами при этом является приготовление резиновой смеси, формообразование и вулканизация. Приготовление смеси заключается в смешивании подогретого до пластичного состояния каучука с другими компонентами в червячных или валковых смесителях. При этом первыми вводят компоненты – противостарители (вазелины), а последними – компонент – вулканизатор (серу) и ускорители вулканизации. Формообразование осуществляют выдавливанием, прессованием, литьем под давлением.