Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Allen and Holberg - CMOS Analog Circuit Design

.pdf
Скачиваний:
44
Добавлен:
05.06.2015
Размер:
2.21 Mб
Скачать

Allen and Holberg - CMOS Analog Circuit Design

Page VI.3-4

GAIN OF THE TWO-STAGE COMPARATOR

 

 

+

 

 

+

 

 

 

 

 

gm1vid

r ds2

r ds4 v1 gm6v1

r ds6

r ds7

vout

 

 

-

 

 

-

 

 

 

 

 

vid = vP - vN

 

 

gm1

 

 

gm6

 

 

Av =

 

 

 

 

 

 

gds2 + gds4 gds6 + gds7

 

 

 

W1W6

 

 

Av =

2 KNKP L1 L6

 

 

λ2 + λ4 ) ( λ6 + λ7 ) I1I6

 

(

Using

W1

W6

λN = 0.015V-1, λP = 0.02V-1

= 5,

= 5,

 

L1

L6

 

 

 

 

and Table 3.1-2 values;

 

 

 

 

 

Av =

2 (17)(8)(5)(5)

.10-6

95199.10-6

 

 

 

 

=

 

(0.015+0.02)2

I1I6

I1I6

Assume I1 = 10 µA and I6 = 100 µA

Av = 3010

VOH - VOL = Resolution = 5 mV (assume)

Av

5

then VOH - VOL = 1000 . 3000 = 15 Volts

Allen and Holberg - CMOS Analog Circuit Design

Page VI.3-5

PROPAGATION DELAY OF THE TWO-STAGE COMPARATOR

 

 

 

 

VDD

 

 

 

 

 

 

 

 

 

 

 

signal swing

 

 

 

 

 

 

 

less than the

 

 

M3

 

 

 

M4

 

output

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

VGS6

 

 

 

 

 

 

 

 

 

 

-

M6

 

 

 

 

 

 

 

 

 

 

vN

M1

 

 

M2

 

 

 

vP

 

i6 key node

 

 

 

 

 

 

 

 

 

CL1

vO

 

 

 

 

 

 

 

 

 

 

i7

VBIAS

 

 

M5

 

 

 

 

 

 

CL2

 

 

 

 

 

 

 

 

M7

 

 

i5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

 

V

GS6

= V

DD

- v

P

+ V

 

 

 

 

 

 

 

 

D G 2

 

dv

 

iC = C dt

, t =

v

 

C I

 

 

t2+

V

VTRP3

VSSDD

 

 

VTRP3

 

t2-

 

VTRP3 - VS S

 

 

t2+ = CL2 K P W6

- |VT6 |) 2

 

 

2 L6 ( V D D - vP - VD G 2

- I7

VDD - VTRP3

t2- = CL2 W7 L5

L7 W5 i5

Slew rate = isource/sink CLi

Allen and Holberg - CMOS Analog Circuit Design

Page VI.3-6

CALCULATION OF COMPARATOR PROPAGATION DELAY

Find the total propagation delay of the comparator shown when the input vP goes from -1 to +1 in 2ns. Assume the trip point of the output(next stage) is zero.

Total delay = 1st stage + 2nd stage

 

delay

delay

t =

t1 + t2

 

t1 =

( vDO(t0) - VTRP2)

I5

CL1 ,

 

 

 

+5V

 

 

10

 

 

 

10

M4

40

 

M3

10

 

 

CL1=0.3pF

M6

 

vDO

 

vN M1

M2

 

I6

 

vO

20

 

vP

10

 

CL2=

 

 

 

10pF

I5=20 A I7=40 A

-5V

vDO(t0) = 5 because vP = -1V

VTRP2 = VDD

- VGS6, VGS6 = |VT6| +

2I7

KP'( W6/L6)

 

 

 

 

 

 

 

 

 

 

 

 

 

VGS6 = 1 +

 

2.40

= 2.58 V ‘ VTRP2 = 5 - 2.58 = 2.42 V

 

8.4

 

 

 

0.3pF

 

 

 

 

 

 

 

t1 = (5 - 2.42)

 

 

= 38.7ns

 

 

 

 

 

 

 

20µA

 

 

 

 

 

 

 

t2 = vO (t

 

 

CL2

 

 

 

CL2

 

 

0) - 0

 

 

 

 

= 5

 

 

 

 

 

 

 

I6 - I7

 

I6 - I7

 

 

I

 

KP6' W6

V

 

 

- V

 

 

(min) - V

2

6

=

 

 

D D

D O

 

 

2 L6

 

 

 

 

T6

 

[VDO(min) is an optimistic assumption based on vDS2 0]

VDO(min) vDS2(0) - vGS1 + vN = -VT1 -

I5

= -1.77

KN.2

I6 =

8.10-6

 

µA

 

 

2

(4)(5 - (-1.77) -1) 2 = 533

 

 

 

10 pF

 

 

 

 

t2 = 5

= 101 ns

 

 

 

(533 - 40) µA

 

 

 

t = t1 +

t2 139 ns

 

 

 

 

 

 

 

 

 

 

 

Second order consideration: Charging of Csb of M1 and M2

Allen and Holberg - CMOS Analog Circuit Design Page VI.3-7

SIMULATION OF THE PROPAGATION DELAY

5 v

 

 

 

+5V

 

 

 

 

 

10

 

 

 

 

 

M3

10

M4

 

 

 

 

 

M6

 

 

 

 

 

(6)

40

 

 

 

 

 

10

 

 

 

 

CL1

 

 

vN

M1

 

 

(9)

 

20

M2

 

vO

3 v

 

vP

 

 

10

CL2

 

 

10

 

 

2.42v

M8

 

 

20

 

 

10

 

 

 

 

 

 

 

M7

10

 

 

 

 

-5V

 

V(9)

1 v

 

 

vP

 

 

 

0v tprop=167 ns

Actual

-1 v

-1.54v

Approx.

-3 v

-5 v

 

 

 

0ns

50ns

100ns

150ns

V(6)

COMPARATOR PROPAGATION DELAY VDD 10 0 DC 5V

VSS 11 0 DC -5V VN 1 0 DC 0V

VP 2 0 PULSE(-1 1 0N 1N 1N 500N 1U) M1 3 1 5 5 MNMOS W=20U L=10U M2 6 2 5 5 MNMOS W=20U L=10U M3 3 3 10 10 MPMOS W=10U L=10U M4 6 3 10 10 MPMOS W=10U L=10U M5 5 8 11 11 MNMOS W=10U L=10U M6 9 6 10 10 MPMOS W=40U L=10U M7 9 8 11 11 MNMOS W=20U L=10U M8 8 8 11 11 MNMOS W=10U L=10U CL1 6 0 0.3PF

CL2 9 0 10PF IS 0 8 DC 20UA

.MODEL MNMOS NMOS VTO=1 KP=17U +LAMBDA=0.015 GAMMA=0.8 PHI=0.6

.MODEL MPMOS PMOS VTO=-1 KP=8U +LAMBDA=0.02 GAMMA=0.4 PHI=0.6

.TRAN 2N 300N

.PRINT TRAN V(6) V(9) V(2)

.PROBE

.END

200ns

250ns

300ns

Time

Allen and Holberg - CMOS Analog Circuit Design

Page VI.3-8

SMALL SIGNAL PERFORMANCE

+

+gm1

gm2

 

vin

+

-

-

 

 

R1 C1

R2 C2

vout

-

vout(s)

Aoωp1ωp2

vin(s)

= ( s + ω p 1) ( s + ω p 2)

ωp1 = 1 R1C1

ωp2 = 1 R2C2

Ao = gm1gm2R1R2

Example - (Fig 7.3-4)

 

 

1

1

 

I5 = 20µA ‘ R1 = gds2 + gds4

= 10µA = 3.33MΩ

1

 

 

ωp1 = (0.3pF)(3.33MΩ) = 1Mrps

 

1

1

 

I7 = 40µA ‘ R2 = gds6 + gds7

= 40µA(.03)

= 833KΩ

1

 

 

ωp2 = (10pF)(833KΩ)

= 120Krps

 

gm1 = 26µs, gm2 = 50.6µs ‘

Ao = 1099

 

Allen and Holberg - CMOS Analog Circuit Design

Page VI.3-9

TWO-STAGE, CMOS COMPARATOR

General Schematic

 

 

 

 

 

 

 

 

 

VDD

 

 

 

 

 

 

 

 

M3

 

 

 

 

M4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M6

 

vN

 

 

M1

 

 

M2

 

vP

 

 

vO

I8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M8

 

 

 

 

 

 

 

M5

 

 

 

 

 

M7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

Key Relationships for Design:

 

 

 

 

 

 

 

 

 

i

D

=

β

(v

G S

- V

T

)2

i

D

(sat) =

β

[v

DS

(sat)]2

 

 

2

 

 

 

 

 

2

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vDS(sat) =

2iD(sat)

 

 

 

 

 

 

 

 

β

 

 

 

 

 

 

 

Also,

g m = 2βID

where

β = KW L

Allen and Holberg - CMOS Analog Circuit Design

Page VI.3-10

COMPARATOR DESIGN PROCEDURE

1. Set the output current to meet the slew rate requirements.

dV i = C dt

2. Determine the minimum sizes for M6 and M7 for the proper ouput

voltage swing.

vDS(sat) =

2ID

β

3.Knowing the second stage current and minimum device size for M6, calculate the second stage gain.

-gm6

A2 = gds6 + gds7

4.Calculate the required first stage gain from A2 and gain specifications.

5.Determine the current in the first stage based upon proper mirroring and minimum values for M6 and M7. Verify that Pdiss is met.

6.Calculate the device size of M1 from A1 and IDS1.

A1

=

-gm1

and gm1

=

2K'W/L

gds1

+ gds3

IDS1

 

 

 

 

7.Design minimum device size for M5 based on negative CMR requirement using the following (IDS1 = 0.5IDS5):

vG1(min) = VSS + VDS5

+

IDS5

+ VT1(max)

 

 

 

 

β1

where VDS5

=

2IDS5

= VDS5(sat)

β5

 

 

 

 

8.Increase either M5 or M7 for proper mirroring.

9.Design M4 for proper positive CMR using:

vG1(max) = VDD -

IDS5

(max) + VT1

- VTO3

 

β3

 

10.Increase M3 or M6 for proper mirroring.

11.Simulate circuit.

Allen and Holberg - CMOS Analog Circuit Design

Page VI.3-11

DESIGN OF A TWO-STAGE COMPARATOR

Specifications:

 

 

 

 

 

 

 

 

 

 

 

Avo > 66 dB

 

 

 

Lambda = 0.05V-1 (L = 5 µm)

 

 

Pdiss < 10 mW

 

VDD = 10 V

 

 

 

 

 

 

 

CL = 2 pF

 

 

 

VSS = 0 V

K'W

 

 

 

 

tprop < 1 µs

 

 

 

Recall that β =

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

CMR = 4-6 V

 

 

 

 

 

 

 

 

 

 

Output swing is VDD - 2V and VSS + 2V

 

 

 

 

 

 

1). For tprop << 1 µs choose slew rate at 100 V/µs

 

 

 

 

dvOUT

= ( 2.10-12) ( 100.10-6) = 200 µA

 

 

 

 

I7 = CL

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2). Size M6 and M7 to get proper output swing,

 

 

 

 

 

M7:

 

 

 

 

 

 

 

 

 

 

 

2V > vDS7(sat) =

2I7

=

2(200µA)

W7

> 5 . 88

β7

17.0µA/V2(W7/L7)

L7

M6:

 

 

 

 

 

 

 

 

 

 

 

 

 

2( IOUT+I7)

2(400µA)

 

 

W

 

 

 

 

 

 

 

6

2V > vDS6(sat) =

 

β6

=

8.0µA/V2(W6/L6)

L6

> 12 . 5

-gm6

 

-1

 

2KP'W6

-10

 

 

 

 

3). A2 = gds6 + gds7

=

λN + λP

I6L6

 

 

 

 

 

4). Avo = A1A2 = 66 dB 2000 A1 = 200

Allen and Holberg - CMOS Analog Circuit Design

Page VI.3-12

COMPARATOR DESIGN - CONT'D

5). Assuming vGS4 = vGS6, then I4

=

S4

 

 

 

 

 

 

 

I6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

choose S4 = 1 which gives I4 = 12.5 (200µA)

= 16.0 µA

 

 

 

 

 

 

 

 

 

 

S5

 

200µA

µA

 

 

Assume S5 = 1 which gives I5 = S

 

I7

=

5.88

= 34

 

 

 

 

 

1

 

 

 

 

7

 

 

 

 

 

 

 

 

 

= 17 µA

 

 

 

 

 

 

 

 

 

 

and I4 = 2 I5

 

 

W

 

 

 

 

 

 

Choose

I4 = 1 7 µA

 

 

to keep

ratios greater than 1.

 

 

 

 

 

L

 

 

I5 = 34 µA

W4

 

W6 17

 

 

 

 

 

 

L4

= L6

200

= 1.06 1.0

 

 

 

Pdiss = 10( I7 + I5 ) = 2.34 mW < 10 mW

 

 

 

 

6). A1

 

 

1

2K

'W

1

W

1 = [ (λ1 + λ4)A1]

I

 

 

=

λ1

 

N

 

 

 

2

4

= 200

 

 

+ λ4

I4L1

 

L1

 

 

 

2KN'

 

 

W1 = 2 0 0

(Good for noise)

 

 

 

 

 

 

 

L1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7). VDS5 = vG1(min) - VSS

-

I5

 

 

 

 

 

 

 

 

 

- VT1(max)

 

 

 

 

 

 

 

 

 

 

 

β1

 

 

 

 

 

 

 

 

VDS5 = 4 - 0 -

 

(34)

-1 = 2.90 V

 

 

 

 

2(17.0)(200)

 

 

 

 

 

 

 

2I5

 

2(34µ)

 

W5

 

 

 

 

 

 

VDS5 =

β5

=

(17µ)S5

 

L5

> 0.48

 

 

 

 

 

 

I5

34

 

 

= 1.0

 

W5

 

 

 

 

 

8). S5 = I7 S7 = 200 (5.88)

 

L5

= 1 . 0

 

 

 

 

Allen and Holberg - CMOS Analog Circuit Design

Page VI.3-13

COMPARATOR DESIGN - CONT'D

 

9). VG1(max) = VDD -

 

 

I5

 

- VTO3 (max) + VT1(min)

 

 

 

 

 

 

 

β3

 

 

 

 

 

 

 

 

 

 

I5

 

 

 

 

 

 

 

 

 

 

 

β3 =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

V D D - VG1 (max) -

VTO3 (max) + VT1(min)

 

 

 

 

 

 

=

34 µA

 

 

 

 

= 2.76.10-6

 

 

 

 

 

 

 

 

 

1 0 - 6 - 1 + 0 . 5) 2

 

 

 

 

 

 

 

 

 

(

 

 

 

 

 

 

 

 

 

 

 

 

W3

= (2.76)(2)

= 0.69

W3

=

W4 > 0.69

 

 

 

 

 

 

 

L3

8

 

 

W4

 

L3

 

L4

 

 

 

 

 

 

 

(Previously showed

 

 

> 1.06

so no modification is necessary)

 

 

 

 

L4

 

10). Summary

 

 

 

 

 

 

 

 

 

W

 

 

 

 

 

 

 

 

 

 

 

 

 

Wdrawn

 

 

 

 

 

 

 

 

 

 

 

 

 

=

(L - 1.6)

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

Design Ratios

 

 

 

Actual Values with 5 m

 

 

Proper Mirroring

 

 

 

 

 

 

 

 

 

minimum geometry

 

 

and LD = 0.8 m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W1

W2

 

 

 

W1

 

W2

 

1000

 

 

680

 

 

 

L1

= L2

= 200

 

 

L1

= L2

=

5

 

 

 

5

 

 

 

 

W3

W4

 

 

 

W3

 

W4

 

5

 

 

3.4

5

 

 

L3

= L4

= 1.0

 

 

L3

= L4

=

5

 

 

5

 

5

 

 

W5

= 1.0

 

 

 

W5

= 1.0

 

 

 

 

3.4

5

 

 

L5

 

 

 

 

L5

 

 

 

 

 

 

5

 

 

5

 

 

W6

= 12.5

 

 

W6

=

62.5

 

 

 

 

60

 

 

 

L6

 

 

L6

5

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W7

= 5.88

 

 

W7

=

30

 

 

 

 

 

30

 

 

 

L7

 

 

L7

5

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Need to adjust for proper mirroring)

 

S6

S7

S

= 2 S

 

 

4

5

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]