Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Доклад. Исмаева Г. Р. А6-04.docx
Скачиваний:
116
Добавлен:
04.06.2015
Размер:
48.58 Кб
Скачать

Национальный Исследовательский Ядерный Университет

Московский Инженерно-Физический Институт

Кафедра №18

Конструирование приборов и установок

ДОКЛАД

по дисциплине

«Детали машин и основы конструирования»

на тему: «Магнитные методы неразрушающего контроля»

Выполнил: Исмаева Г. Р. А06-04

Консультанты: Сурин В. И., Волкова З. С.

2014 год

Оглавление

ВВЕДЕНИЕ 3

1.ВИДЫ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ И ИХ КЛАССИФИКАЦИЯ 3

2.МАГНИТНЫЕ МЕТОДЫ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ 4

2.1МАГНИТОПОРОШКОВЫЙ КОНТРОЛЬ 5

2.2МЕТОД МАГНИТНЫХ СУСПЕНЗИЙ 7

2.3ИНДУКЦИОННЫЙ МЕТОД КОНТРОЛЯ 8

2.4МАГНИТОГРАФИЧЕСКИЙ МЕТОД КОНТРОЛЯ 9

3.ЗАКЛЮЧЕНИЕ 11

4.Список используемых источников 12

ВВЕДЕНИЕ

Неразрушающий контроль (НК), говоря языком нормативных документов – это контроль, который не разрушает (именно такое определение дано в ГОСТ 16504-81 «Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения»).

Кажущееся неполным и расплывчатым понятие обретает чёткие формы, стоит только разложить его «по полочкам». Так, под словом «контроль» подразумевается «измерение значений рабочих параметров и свойств объекта и их проверка на соответствие допустимым величинам». «Неразрушающий» означает «не требующий демонтажа или остановки работы объекта», «не подразумевающий непосредственного вмешательства в исследуемую среду».

  1. Виды неразрушающего контроля и их классификация

Методы, с помощью которых реализуется НК, называются методами неразрушающего контроля (далее МНК).

Неразрушающий контроль, в зависимости от физических явлений, положенных в его основу, подразделяется на виды:

а) магнитный,

б) электрический,

в) вихретоковый,

г) радиоволновой,

д) тепловой,

е) оптический,

ж) радиационный,

З) акустический,

и) проникающими веществами.

Методы каждого вида неразрушающего контроля классифицируются по следующим

признакам:

а) характеру взаимодействия физических полей или веществ с контролируемым объектом;

б) первичным информативным параметрам;

в) способам получения первичной информации.

В данной работе мною будут рассмотрены магнитные методы неразрушающего контроля.

  1. Магнитные методы неразрушающего контроля

Магнитные МНК основаны на анализе взаимодействия контролируемого объекта с магнитным полем  и применяются, как правило, для обнаружения внутренних и поверхностных дефектов объектов, изготовленных из ферромагнитных материалов.

По характеру взаимодействия физического поля с объектом этот вид контроля не дифференцируют: во всех случаях используют намагничивание объекта и измеряют параметры, используемые при контроле магнитными методами.

Процесс намагничивания и перемагничивания ферромагнитного материала сопровождается возникновением гистерезиса. Химический состав, структура, наличие несплошностей и другие свойства, которые требуется контролировать, обычно связаны с параметрами процесса намагничивания и петлей гистерезиса.

К основным магнитным методам НК относят магнитопорошковый, магнитных суспензий, индукционный и магнитографический метод.

Магнитные методы применяют для измерения толщины неферромагнитного покрытия на ферромагнитном основании; для дефектоскопии поверхностных и подповерхностных участков ферромагнитных материалов; для получения информации о магнитной проницаемости и ее изменении в зависимости от напряженности магнитного поля.

    1. Магнитопорошковый контроль

Магнитопорошковый контроль служит для выявления поверхностных и подповерхностных дефектов. Его применяют для контроля конструкций и деталей из ферромагнитных сталей обыкновенного качества, углеродистых качественных и низколегированных сталей.

При магнитопорошковом контроле выявляются трещины шириной от 1 мкм и глубиной от 0,01 мм до 8 мм. При контроле могут быть выявлены: волосовины, неметаллические включения, расслоения, закаты, подповерхностные флокены, поры, раковины в поковках и прокате; трещины шлифовочные, ковочные, штамповочные, надрывы, а также сварочные дефекты (трещины, непровары, шлаковые включения, поры, раковины и др.) в элементах конструкций и деталях; трещины, возникшие в элементах конструкций и деталях при эксплуатации машин.

Магнитопорошковым контролем не могут быть проконтролированы элементы конструкций и детали: из неферромагнитных сталей; на поверхности которых не обеспечена необходимая зона для намагничивания и нанесения индикаторных материалов; со структурной неоднородностью и резкими изменениями площади поперечного сечения; с несплошностями, плоскость раскрытия которых совпадает с направлением намагничивающего поля или составляет с ней угол менее 30°. На выявляемость дефектов оказывают влияние многие факторы, связанные со свойствами объекта и принятой технологией магнитопорошкового контроля, а именно: магнитные свойства и структурные неоднородности материала, шероховатость, форма объекта контроля, его габаритные размеры, масса, наличие покрытий, их толщина и свойства, вид тока, схема намагничивания, способ контроля, а также значения таких параметров технологии контроля, как напряженность поля или сила тока. Допускается контроль по немагнитным покрытиям (хром, кадмий и др.). Наличие покрытий толщиной до ~20 мкм практически не влияет на выявляемость дефектов. При толщине покрытия более 100-150 мкм могут быть выявлены только дефекты размером более 0,15 мм.

Масштабность применения магнитопорошкового метода объясняется его высокой производительностью, наглядностью результатов контроля и высокой чувствительностью. При правильной технологии контроля элементов конструкций и деталей этим методом обнаруживаются трещины в начальной стадии их появления, когда обнаружить их без специальных средств контроля трудно или невозможно.

Применение данного метода практически не ограничивает, как правило, плохое состояние поверхностей сварных соединений: наличие брызг и чешуйчатости; имеющиеся в сварных швах резкие переходы от наплавленного металла к основному, создающие дополнительные магнитные потоки рассеяния, а следовательно, дополнительные индикации. Метод позволяет достаточно эффективно выявлять в сварных соединениях поверхностные трещины.

Реализация метода. На намагниченный участок сварного шва наносится с помощью распылителя (или просто насыпается) сухой магнитный порошок. Магнитные частицы порошка, попадая в поле дефекта под действием электрического тока 7, намагничиваются и в результате притягивающей сипы перемещаются в зону наибольшей неоднородности магнитного по­ля. Порошинки, притягиваясь друг к другу, выстраиваются в цепочки, ориентируясь по магнитным силовым линиям поля 2, и, накапливаясь, образуют характерные рисунки в виде валиков 3, по которым судят о на­личии дефекта 4.

Суть данного метода такова: магнитный поток в бездефектной части изделия не меняет своего направления; если же на пути его встречаются участки с пониженной магнитной проницаемостью, например дефекты в виде разрыва сплошности металла (трещины, неметаллические включения и т.д.), то часть силовых линий магнитного поля выходит из детали наружу и входит в нее обратно, при этом возникают местные магнитные полюсы (N и S) и, как следствие, магнитное поле над дефектом. Так как магнитное поле над дефектом неоднородно, то на магнитные частицы, попавшие в это поле, действует сила, стремящаяся затянуть частицы в место наибольшей концентрации магнитных силовых линий, то есть к дефекту. Частицы в области поля дефекта намагничиваются и притягиваются друг к другу как магнитные диполи под действием силы так, что образуют цепочные структуры, ориентированные по магнитным силовым линиям поля.

В качестве магнитных порошков применяют: тонко измельченную и просеянную через сито с 3600 отверстиями на 1 см2 железную окалину; частично восстановленный крокус в среде светильного газа при температуре 800°С; магнетит (Fe3O4), полученный химическим способом, и др.

Выявление дефектов облегчается применением окрашенных порошков (белого, желтого, красного). Намагничивание швов производят: электромагнитами П-образной формы, имеющими 5000— 10000 ампер-витков; обертыванием изделия несколькими витками гибкого кабеля, подключенного к сварочному трансформатору или генератору; пропусканием тока величиной 300 — 600 а непосредственно через изделие. Для намагничивания пригодны как постоянный, так и переменный токи.

Наибольшая вероятность выявления дефектов достигается в случае, когда плоскость дефекта составляет угол 90грд. с направлением намагничивающего поля (магнитного потока). С уменьшением этого угла чувствительность снижается и при углах, существенно меньших 90грд. дефекты могут быть не обнаружены. В связи с этим каждый участок нужно проверять дважды: один раз намагничивая его поперек, а второй — вдоль шва.