Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FAIT1 / Ряды / Тема 3. Разложение функций в степенной ряд.doc
Скачиваний:
328
Добавлен:
04.06.2015
Размер:
318.46 Кб
Скачать

3.4. Применение рядов в приближенных вычислениях

Степенные ряды имеют самые разнообразные приложения. С их помощью вычисляют с заданной степенью точности значения функций, пределов функций, определенных интегралов, находят приближенные решения дифференциальных уравнений.

Остановимся на применении степенных рядов к приближенным вычислениям определенных интегралов.

Многие определенные интегралы, получающиеся при решение практических задач, не могут быть вычислены с помощью формулы Ньютона-Лейбница, поскольку применение этой формулы связано с нахождением первообразной, которая не всегда выражается в элементарных функциях.

Если, однако, подынтегральная функция разлагается в степенной ряд, а отрезок интегрирования входит в область сходимости этого ряда, то возможно приближенное вычисление интеграла с любой заданной точностью.

Пусть требуется вычислить приближенно определенный интеграл с заданной точностью ε.. Для этого необходимо:

- подынтегральную функцию разложить в степенной ряд, указав область сходимости;

- убедившись, что отрезок интегрирования [a,b] входит в область сходимости ряда, проинтегрировать обе части этого равенства, причем правую часть проинтегрировать почленно. В результате, в простейших случаях, получается знакочередующийся числовой ряд, удовлетворяющий условиям теоремы Лейбница, т.е. сходящийся ряд;

- в качестве приближенного значения интеграла берем значение частичной суммы Sn, число п определяется из условия, что ошибка при замене суммы ряда его частичной суммой по абсолютной величине не превосходит первого из отброшенных членов ряда.

Пример 28

Вычислить приближенно интеграл с точностьюε=0,1.

Решение.

Данный интеграл относится к неберущимся интегралам. Однако подынтегральная функция разлагается в степенной ряд. Используем известное разложение в ряд Маклорена

при t (–,+);

Полагая t = -х2, получим разложение подынтегральной функции в степенной ряд

при х (–,+);

Так как отрезок интегрирования [0;1] входит в область сходимости, то в этих пределах можно проинтегрировать обе части последнего равенства (ряд интегрируем почленно):

Получили числовой знакочередующийся ряд, удовлетворяющий условиям теоремы Лейбница. Так как модуль четвертого члена ряда меньше заданной точности ε = 0,1, т.е. , значит, членами ряда, начиная с четвертого, можно пренебречь. Таким образом, заданная точность обеспечивается первыми тремя членами ряда, т.е.

.

Пример 29

Вычислить приближенно интеграл с точностьюε=0,0001.

Решение.

Используя биномиальное разложение функции (1+t)m, полагая в нем и ,получим разложение подынтегральной функции в степенной ряд

при .

Так как отрезок интегрирования [0;0,25] входит в область сходимости, то обе части последнего равенства можно проинтегрировать (правую часть почленно) по заданному отрезку, в результате получим

Заметим, что уже третий член ряда по абсолютной величине не превосходит заданной точности е = 0,0001, т.е. .

Следовательно, для обеспечения заданной точности е достаточно взять первых два члена полученного числового ряда.

.

50