Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FAIT1 / Ряды / Тема 3. Разложение функций в степенной ряд.doc
Скачиваний:
295
Добавлен:
04.06.2015
Размер:
318.46 Кб
Скачать

Тема 3. Разложение функций в степенной ряд

3.1. Постановка задачи. Ряд Тейлора

В теории функциональных рядов центральное место занимает раздел, посвященный разложению функции в ряд.

Таким образом, ставится задача: по заданной функции требуется найти такой степенной ряд

,

который на некотором интервале сходился и его сумма была равна , т.е.

= ..

Эта задача называется задачей разложения функции в степенной ряд.

Необходимым условием разложимости функции в степенной ряд является её дифференцируемость бесконечное число раз – это следует из свойств сходящихся степенных рядов. Такое условие выполняется, как правило, для элементарных функций в их области определения.

Итак, предположим, что функция имеет производные любого порядка. Можно ли её разложить в степенной ряд, если можно, то как найти этот ряд? Проще решается вторая часть задачи, с неё и начнем.

Допустим, что функциюможно представить в виде суммы степенного ряда, сходящегося в интервале, содержащем точкух0:

= .. (*)

где а012,,...,ап,... – неопределенные (пока) коэффициенты.

Положим в равенстве (*) значение х = х0, тогда получим

.

Продифференцируем степенной ряд (*) почленно

= ..

и полагая здесь х = х0, получим

.

При следующем дифференцировании получим ряд

= ..

полагая х = х0, получим, откуда .

После п -кратного дифференцирования получим

Полагая в последнем равенстве х = х0, получим , откуда

Итак, коэффициенты найдены

, , , …, ,….,

подставляя которые в ряд (*), получим

Полученный ряд называется рядом Тейлора для функции .

Таким образом, мы установили, что если функцию можно разложить в степенной ряд по степеням (х - х0), то это разложение единственно и полученный ряд обязательно является рядом Тейлора.

Заметим, что ряд Тейлора можно получить для любой функции, имеющей производные любого порядка в точке х = х0. Но это еще не означает, что между функцией и полученным рядом можно поставить знак равенства, т.е. что сумма ряда равна исходной функции. Во-первых, такое равенство может иметь смысл только в области сходимости, а полученный для функции ряд Тейлора может и расходиться, во-вторых, если ряд Тейлора будет сходиться, то его сумма может не совпадать с исходной функцией.

3.2. Достаточные условия разложимости функции в ряд Тейлора

Сформулируем утверждение, с помощью которого будет решена поставленная задача.

Если функция в некоторой окрестности точки х0 имеет производные до (n+1)-го порядка включительно, то в этой окрестности имеет место формула Тейлора

где Rn(х)-остаточный член формулы Тейлора – имеет вид (форма Лагранжа)

где точка ξ лежит между х и х0.

Отметим, что между рядом Тейлора и формулой Тейлора имеется различие: формула Тейлора представляет собой конечную сумму, т.е. п - фиксированное число.

Напомним, что сумма ряда S(x) может быть определена как предел функциональной последовательности частичных сумм Sп(x) на некотором промежутке Х:

.

Согласно этому, разложить функцию в ряд Тейлора означает найти такой ряд, что для любого х X

Запишем формулу Тейлора в виде, где

.

Заметим, что определяет ту ошибку, которую мы получаем, заменяй функцию f(x) многочленом Sn(x).

Если , то,т.е. функция разлагается в ряд Тейлора. И наоборот, если , то.

Тем самым мы доказали критерий разложимости функции в ряд Тейлора.

Для того, чтобы в некотором промежутке функция f(х) разлагалась в ряд Тейлора, необходимо и достаточно, чтобы на этом промежутке , где Rn(x) - остаточный член ряда Тейлора.

С помощью сформулированного критерия можно получить достаточные условия разложимости функции в ряд Тейлора.

Если в некоторой окрестности точки х0 абсолютные величины всех производных функции ограничены одним и тем же числом М 0, т.е.

, то в этой окрестности функция разлагается в ряд Тейлора.

Из вышеизложенного следует алгоритм разложения функции f(x) в ряд Тейлора в окрестности точки х0:

1. Находим производные функции f(x):

f(x), f’(x), f”(x), f’”(x), f(n) (x),…

2. Вычисляем значение функции и значения её производных в точке х0

f(x0), f’(x0), f”(x0), f’”(x0), f(n) (x0),…

3. Формально записываем ряд Тейлора и находим область сходимости полученного степенного ряда.

4. Проверяем выполнение достаточных условий, т.е. устанавливаем, для каких х из области сходимости, остаточный член Rn(x) стремится к нулю при или .

Разложение функций в ряд Тейлора по данному алгоритму называют разложением функции в ряд Тейлора по определению или непосредственным разложением.