Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
геодезия все ответы.docx
Скачиваний:
101
Добавлен:
04.06.2015
Размер:
217.54 Кб
Скачать

13. Измерение горизонтальных углов способом приемов.

Измерение отдельного угла складывается из следующих действий: - наведение трубы на точку, фиксирующую направление первой стороны угла (рис.4.16), при круге лево (КЛ), взятие отсчета L1; - поворот алидады по ходу часовой стрелки и наведение трубы на точку, фиксирующую направление второй стороны угла; взятие отсчета L2, - вычисление угла при КЛ (рис.4.16): βл = L2 - L1, - перестановка лимба на 1o - 2o для теодолитов с односторонним отсчитыванием и на 90o - для теодолитов с двухсторонним отсчитыванием, - переведение трубы через зенит и наведение ее на точку, фиксирующую направление первой стороны угла, при круге право (КП); взятие отсчета R1, - поворот алидады по ходу часовой стрелки и наведение трубы на точку, фиксирующую направление второй стороны угла; взятие отсчета R2, - вычисление угла при КП: βп = R2 - R1, при выполнении условия |βл - βп| < 1.5 * t, где t - точность теодолита, вычисление среднего значения угла: βср = 0.5 * (βл + βп). Измерение угла при одном положении круга (КЛ или КП) составляет один полуприем; полный цикл измерения угла при двух положениях круга составляет один прием. Запись отсчетов по лимбу и вычисление угла производятся в журналах установленной формы.

14. Способы съемки ситуации в теодолитной съемки. Целью теодолитной  (горизонтальной)  съемки  является  составление контурного плана местности.  Съемка элементов  ситуации  на  местности производится относительно пунктов и сторон теодолитного хода съемочного обоснования.  На рис.40 показан абрис теодолитной съемки  по  линии 1-2 теодолитного хода.  Арабскими цифрами в кружках указаны точки, положение которых получено следующими способами съемки ситуации: 1 - прямоугольных координат; 2 - линейной засечки; 3 - угловой засечки; 4 - полярных координат; 5 - створа; 6 - обмера. При съемке способом прямоугольных координат,  положение точки 1 определено координатами Х = 72.4 м, У = 9.8 м от линии теодолитного хода 1-2.  Приложив  нулевой штрих рулетки к углу дома (точка 1),  на ленту расположенную на линии 1-2 теодолитного хода опускают перпендикуляр  и отсчитывают  его  длину  по рулетке (9.8 м),  по ленте - расстояние от пункта 1 съемочного обоснования до основания перпендикуляра (72.4  м). Перпендикуляры  длиной до 4...8 в зависимости от масштаба съемки восстанавливаются визуально,  а при использовании эккера могут быть увеличены  примерно в пять раз.  Эккер - прибор для построения на местности прямых углов. Способом линейных засечек определено положение второго угла  дома (точки 2).  Для этого на местности измерено расстояния 10.6 и 9.8 м от опорных точек на линии с абсцисами соответственно 54.1  и  64.0.  Угол дома  на плане окажется в точке пересечения дуг с радиусами измеренных расстояний. Способом угловой  засечки  на  плане может быть получена точка 3. Для этого измерены теодолитом углы 33 35' и 65 05'. Способ полярных  координат предусматривает измерение на местности (точка 4) полярного угла (70 00') и  его стороны (35.3 м). Способ створа  (вертикальная плоскость через две точки) использован при съемке точки пересечения ручьем линии теодолитного хода (точка 5). Расстояние (10.5 м) измерено по створу от пункта 1. Способ обмера элементов ситуации применяют для  контроля  полевых измерений и графических построений на плане.

15.Вычисление углов невязки и ее распределение в замкнутых теодолитных ходах. За счет возникновения ошибок сумма измеренных углов теодолит хода может отличаться от теоретич суммы углов.

Угловая невязка- разность между суммой углов практической и суммой углов теоретической

fβ =∑β изм - ∑β теор

∑β теор =180*(n-2)- измерение внутреннего угла

∑β теор =180*(n+2)- измерение внешнего угла

Невязка должна быть меньше или равна предельной величине

16.Вычисление дирекционных углов и румбов для линий теод хода по измеренным правым и левым горизонтальным углам.

Для вычисления дир углов замкнутого хода надо знать дир угол из одной стороны хода. Зная начальный дир угол и привязочные углы. Можно определить дир углы всех линий хода

При измеренном правом гор угле:

αnn- 1 + 180- β прав.

При измеренном левом угле:

αnn- 1 + β лев – 180

Румбы находятся:

0-90 СВ r= α

90-180 ЮВ r=180-α

180-270 ЮЗ r= α-180

270-360 СЗ r=360- α

17. Вычисление абсолютной и относительной линейных невязок и их распределение в замкнутом теодолитном ходе. Вычисление координат.

Линейная невязка- вычисление приращения ∆х и ∆у, содержащие в себе некоторые ошибки и их суммы отличаются от 0 на некоторую величину f

Абсолютная линейная невязка:

ƒ s= ƒх2+ ƒу2

Относительная невязка:

ƒ относ.=, где Р- периметр хода

Вычисление координат:

По исправленным приращениям координат вычисляют координаты поворотных точек хода:

хn= х n-1 +∆ х испр

уn= у n-1 +∆ у испр

18.Прамая и обратная геодезические задачи.  Прямая геодезическая задачаВ геодезии часто приходится передавать координаты с одной точки на другую. Например, зная исходные координаты точки А (рис.23), горизонтальное расстояние SAB от неё до точки В и направление линии, соединяющей обе точки (дирекционный угол αAB или румб rAB), можно определить координаты точки В. В такой постановке передача координат называется прямой геодезической задачей.

Рис. 23. Прямая геодезическая задача

Для точек, расположенных на сфероиде, решение данной задачи представляет значительные трудности. Для точек на плоскости она решается следующим образом. Дано: Точка А( XA, YA )SAB и αAB. Найти: точку В( XB, YB ). Непосредственно из рисунка имеем: ΔX = XB – XA ;  ΔY = YB – YA . Разности ΔX и ΔY координат точек последующей и предыдущей называются приращениями координат. Они представляют собой проекции отрезка АВ на соответствующие оси координат. Их значения находим из прямоугольного прямоугольника АВС: ΔX = SAB · cos αAB ; ΔY = SAB · sin αAB . Так как в этих формулах SAB всегда число положительное, то знаки приращений координат ΔX  и  ΔY зависят от знаков cos αAB  и  sin αAB. Для различных значений углов знаки ΔX и ΔY представлены в табл.1.Знаки приращений координат ΔX и ΔY

Приращения координат

Четверть окружности в которую направлена линия

I (СВ)

II (ЮВ)

III (ЮЗ)

IV (СЗ)

ΔX

+

+

ΔY

+

+

При помощи румба приращения координат вычисляют по формулам: ΔX = SAB · cos rAB ; ΔY = SAB · sin rAB . Знаки приращениям дают в зависимости от названия румба. Вычислив приращения координат, находим искомые координаты другой точки: XB = XA + ΔX  ;  YB = YA + ΔY  . Таким образом можно найти координаты любого числа точек по правилу: координаты последующей точки равны координатам предыдущей точки плюс соответствующие приращения. Обратная геодезическая задача заключается в том, что при известных координатах точек А( XA, YA ) и В( XB, YB ) необходимо найти длину SAB и направление линии АВ: румб rAB  и  дирекционный угол αAB (рис.24).

Рис. 24. Обратная геодезическая задача Даннная задача решается следующим образом. Сначала находим приращения координат:  ΔX = XB – XA ;  ΔY = YB – YA . Величину угла rAB определем из отношения

ΔY

tg rAB

ΔX 

 По знакам приращений координат вычисляют четверть, в которой располагается румб, и его название. Используя зависимость между дирекционными углами и румбами, находим αAB. Для контроля расстояние SAB дважды вычисляют по формулам:

SAB=

ΔX

=

ΔY

ΔX · sec αAB = ΔY · cosec αAB

cos αAB

sin αAB

 

SAB=

ΔX

=

ΔY

ΔX · sec rAB = ΔY · cosec rAB

cos rAB

sin rAB

Расстояние SAB можно определить также по формуле

.

19.Вычисление площади полигона по координатам его вершин. Пусть требуется определить площадь полигона A1, A2, A3, A4, A5 с координатами вершин x1,y1; x2,y2; x3,y3; x4,y4; x5,y5. Площадь полигона S можно представить трапециями, у которых абсциссы являются основаниями, а разности ординат соседних точек высотами

S = a1A1A2a2 + a2A2A3a3 + a3A3A4a4 - a5A5A4a4 - a1A1A5a5. 2S = (x1 + x2)(y2 - y1) + (x2 + x3)(y3 - y2) + (x3 + x4)(y4 - y3) + (x4 + x5)(y5 - y4) + (x5 + x1)(y1 - y5). (1)

После раскрытия скобок и приведения подобных членов получим

2S = x1y2 - x2y1 + x2y3- x3y2 + x3y4 - x4y3 + x4y5 - x5y4 + x5y1 - x1y5 (2)

После вынесения за скобки x1, x2, x3, x4, x5 будем иметь

2S = x1(y2-y5) + x2(y3-y1) + x3(y4-y2) + x4(y5-y3) + x5(y1-y4)

а если из формулы (2) вынести за скобки y1, y2, y3, y4, y5. то будем иметь

2S = y1(x5-x2) + y2(x1-x3) + y3(x2-x4) + y4(x3-x5) + y5(x4-x1).

В сокращенном виде эти формулы можно записать так:

После преобразований получаем формулу в ее нормальном виде.

Аналогичное можно проделать и для любого другого многоугольника.

20.Планиметр.Определение площади. Аналитический способ. Если участок представляет собой замкнутый многоугольник, то, сняв с плана прямоугольные координаты его вершин, площадь участка вычисляют по формуле:

  ,

где - номера вершин многоугольника, пронумерованных по ходу часовой стрелки.

По этой же формуле можно вычислить площадь с криволинейными границами, если координаты точек границы сняты так часто, что отрезки между точками можно считать прямыми. В последнем случае съём координат выполняют с помощью специального прибора – дигитайзера, а вычисления выполняют на ЭВМ.

Графические способы. Участок на плане разбивают на простые геометрические фигуры (обычно – треугольники), элементы которых измеряют с помощью измерителя и поперечного масштаба, а площади вычисляют по известным формулам и суммируют. Разбиение площади на простые фигуры выполняют также, применяя палетки. Палетка - лист прозрачного материала (восковки, лавсана, пластика), на который нанесена сетка квадратов размером 2×2 мм или система равноотстоящих параллельных линий. Наложив палетку с квадратами на план, подсчитывают число квадратов, уместившихся в измеряемой площади, оценивая дробные части квадратов на краях участка на глаз. Результат подсчёта умножают на площадь одного квадрата. Палеткой с параллельными линиями площадь делится на трапеции, в каждой из которых измеряют длину средней линии. Суммируя площади трапеций, равные произведению длины средней линии на расстояние между линиями, определяют площадь участка. Точность определения площади с помощью палеток - 1/50. Полярный планиметр. Планиметрами называются приборы для измерения площадей. Наиболее распространён полярный планиметр (рис. 4.11). Он состоит из двух рычагов – полюсного 1 и обводного 4, соединяемых шарниром 8. Полюс планиметра (массивный цилиндр 2 с иглой, втыкаемой в бумагу) в процессе измерения площади остается неподвижным. На конце длинного плеча обводного рычага укреплен шпиль 3 (или лупа с маркой в виде креста в ее центре), которым обводят контур измеряемой площади. На коротком плече обводного рычага крепится каретка с мерным колесиком 6, опирающимся на поверхность бумаги, и счетным механизмом. Когда обводной шпиль 3 (или марка) перемещается по линии контура перпендикулярно рычагу, мерное колесико 6 катится по бумаге. При перемещении обводного шпиля по направлению рычага колесико скользит по бумаге, не вращаясь. При перемещении шпиля в иных направлениях происходит и вращение, и скольжение. Суммарное число оборотов колесика, накопленное при обводке шпилем контура, пропорционально площади, ограниченной контуром.

Рис. 4.11. Полярный планиметр

Для подсчета числа оборотов вращение колесика передается на циферблат 5. По ободу колесика нанесено 100 делений. Отсчеты по шкале обода берут с помощью верньера 7. Отсчет по планиметру (рис. 4.12) состоит из отсчета числа целых оборотов колесика по циферблату (на рисунке – цифра 6), отсчета десятых и сотых долей оборота - по шкале обода против нуля верньера (цифры 4 и 2) и тысячных долей оборота – по номеру штриха верньера, совпадающего со штрихом на шкале обода (цифра 2). Для измерения площади, обводят её контур, делая при этом два отсчёта по планиметру: один n1 - до обвода, другой n2 - после. Площадь вычисляют по формуле S = c·(n2 - n1) , (4.3) где c – цена деления планиметра. Для надёжности площадь измеряют 3 - 5 раз и полученные результаты осредняют.

Если во время измерений полюс планиметра располагался внутри измеряемой площади, то вместо формулы (4.3) используют формулу S = c·(n2 - n1 + Q) ,

где Q - постоянная планиметра.

 

Рис. 4.12. Отсчет по планиметру: 6422.

Цена деления планиметра c зависит от длины обводного рычага и регулируется перемещением по нему каретки с мерным колёсиком и счётным механизмом. Перед измерением площади цену деления планиметра определяют. При этом, расположив полюс в стороне, обводят фигуру, площадь S0 которой известна (например, квадрат километровой сетки на карте) и вычисляют цену деления с = S0 /(n2 - n1). Для определения постоянной Q обводят фигуру с известной площадью, поместив полюс внутри этой площади, после чего вычисляют Q = (S/c) - (n2 - n1). Точность определения площади планиметром - 1/300. Электронные планиметры. Электронный полярный планиметр устроен подобно механическому, но имеет электронное счетное устройство и жидкокристаллический дисплей. Электронный роликовый планиметр катится на двух высокофрикционных абразивных роликах, измеряющих смещения по направлению качения. Поворотная штанга с курсором, перемещаемым по контуру площади, измеряет смещения в поперечном направлении. Счетное устройство вычисляет площадь и высвечивает ее величину на дисплее. Электронный роликовый планиметр-дигитайзер позволяет, кроме измерения площади, снимать координаты точек и решать некоторые задачи – определение радиуса окружности, длины дуги, площади сегмента и др. Возможна связь с компьютером через стандартный интерфейс.

21.Виды нивелирования ,применяемые в геодезии. Нивелирование – определение превышения м/у точками земной поверхности. В зависимости от применяемых приборов и методов различают нивелирование тригонометрическое, гидростатическое, барометрическое. Геометрическое нивелирование– вид геод. измерений, позволяющий определить превышение м/у точками или их высоты относительно принятой отсчетной поверхности. Основной принцип Г.Н. заключается в том, что визирный луч прибора должен быть горизонтален. Измерение состоит в отсчитывании по рейкам высоты визирного луча над точками, в которых отвесно установлены рейки. Н.Г – из середины, и вперед. Из середины предпочтительнее. Тригонометрическое нивелирование – чтобы получить превышение методом триг. нивелирования, требуется определить значение угла наклона линии визирования к горизонту и расстояние м/у нивелируемыми точками. Угол измеряют с помощью вертикального круга теодолита. А расстояние измеряется непосредственно. Нивелир – геод. прибор, предназначенный для определения превышений. Нивелиры делятся на 3 вида: Глухой н., Лазерный н. и н. С компенсатором. Глухой н.: зрительная труба, уровень и подставка соединены так, что их взаимное положение можно изменить только при помощи исправительных винтов. Лазерный н.: прибор, основанный на использовании лазерного излучения для создания горизонтальной световой линии или плоскости, относительно которой с помощью нивелирной рейки можно определять превышения. Н. с компенсатором: нивелир, в котором линия визирования занимает горизонтальное положение автоматически после предварительной установки оси вращения в отвесное положение по круговому уровню. (нельзя измерять н. вперед т.к. нет высоты прибора) Поверки геодезических приборов имеют целью обнаружить соответствие взаимного расположения осей и плоскостей данного геодезического прибора. Нивелир Н3 широко использовался в инженерно-геодезических работах.У нивелиров с цилиндрическим уровнем (Н3, НВ1, НТ) : Ось круглого уровня должна быть параллельна оси вращения нивелира. Средняя гориз. нить сетки д/б перпендикулярна к оси вращения нивелира, Визирная ось д/б параллельна оси цилиндрического уровня (главное условие).

22.Сущность геометрического нивелирования. Измерение превышений. Рельеф местности - это совокупность неровностей поверхности земли; он является одной из важнейших характеристик местности. Знать рельеф - значит знать отметки всех точек местности. Отметка точки - это численное значение ее высоты над уровенной поверхностью, принятой за начало счета высот. Отметку любой точки местности можно определить по топографической карте, однако, точность такого определения будет невысокой. Отметку точки на местности определяют по превышению этой точки относительно другой точки, отметка которой известна. Процесс измерения превышения одной точки относительно другой называется нивелированием. Начальной точкой счета высот в нашей стране является нуль Кронштадтского футштока (горизонтальная черта на медной пластине, прикрепленной к устою одного из мостов Кронштадта). От этого нуля идут ходы нивелирования, пункты которых имеют отметки в Балтийской системе высот. Затем от этих пунктов с известными отметками прокладывают новые нивелирные ходы и так далее, пока не получится довольно густая сеть, каждая точка которой имеет известную отметку. Эта сеть называется государственной сетью нивелирования; она покрывает всю территорию страны.Отметки всех пунктов нивелирных сетей собраны в списки - "Каталоги высот". Эти списки непрерывно пополняются, издаются новые каталоги по новым нивелирным ходам. Для нахождения отметки любой точки местности в Балтийской системе высот нужно измерить ее превышение относительно какого-либо пункта, отметка которого известна и есть в каталоге. Иногда отметки точек определяют в условной системе высот, если поблизости нет пунктов государственной нивелирной сети. Вследствие того, что измерение превышений выполняют различными приборами и разными способами, различают: - геометрическое нивелирование (нивелирование горизонтальным лучом), - тригонометрическое нивелирование (нивелирование наклонным лучом), - барометрическое нивелирование, - гидростатическое нивелирование и некоторые другие. Геометрическое нивелирование или нивелирование горизонтальным лучом выполняют специальным геодезическим прибором - нивелиром; отличительная особенность нивелира состоит в том,что визирная линия трубы во время работы приводится в горизонтальное положение. Различают два вида геометрического нивелирования: нивелирование из середины и нивелирование вперед. При нивелировании из середины нивелир устанавливают посредине между точками А и В, а на точках А и В ставят рейки с делениями (рис.4.29). При движении от точки A к точке B рейка в точке А называется задней, рейка в точке В - передней. Сначала наводят трубу на заднюю рейку и берут отсчет a, затем наводят трубу на переднюю рейку и берут отсчет b. Превышение точки B относительно точки А получают по формуле: h = a - b.    Если a > b, превышение положительное, если a < b -отрицательное. Отметка точки В вычисляется по формуле: Hв = Hа + h

 

Высота визирного луча над уровнем моря называется горизонтом прибора и обозначается Hг: Hг = HА + a = HВ + b.    При нивелировании вперед нивелир устанавливают над точкой А так, чтобы окуляр трубы был на одной отвесной линии с точкой. На точку В ставят рейку. Измеряют высоту нивелира i над точкой А и берут отсчет b по рейке (рис.4.30). Превышение h подсчитывают по формуле: h = i - b.   Отметку точки B можно вычислить через превышение по формуле (4.50) или через горизонт прибора: Hв = Hг - b. Если точки А и В находятся на большом расстоянии одна от другой и превышение между ними нельзя измерить с одной установки нивелира, то на линии AB намечают промежуточные точки 1, 2, 3 и т.д. и измеряют превышение по частям (рис.4.31).

 На первом участке A-1 берут отсчеты по задней рейке - a1 и по передней - b1. Затем переносят нивелир в середину второго участка, а рейку с точки A переносят в точку 2; берут отсчеты по рейкам: по задней - a2 и по передней - b2. Эти действия повторяют до конца линии AB. Точки, позволяющие связать горизонты прибора на соседних установках нивелира, называются связующими; на этих точках отсчеты берут два раза - сначала по передней рейке, а затем по задней. Превышение на каждой установке нивелира, называемой станцией, вычисляют по формуле (4.49), а превышение между точками A и B будет равно:

hAB = h = a - b .  Отметка точки B получится по формуле: HB = HA + h. При последовательном нивелировании получается нивелирный ход.