
- •Глава1. История развития биоорганической химии …………………………………
- •Глава 2. Лекции по биоорганической химии …………………………………………
- •Глава 1
- •1.. Характеристика химических связей в биоорганических соединениях
- •2. Сопряженные системы
- •2.1. Общие понятия о строении сопряженных систем
- •2 . 3 . Циклические сопряженные системы. Ароматичность
- •1. Устойчивость к действию окислителя перманганата калия в растворе.
- •3. Способность к реакциям замещения в растворе по ионному( катионному,
- •2.3.1. Современные представления о строении бензола
- •2. 3. 2. Медико-биологическое значение карбоциклических ароматических
- •2. 3. 3. Гетероциклические ароматические соединения
- •2.1. Взаимное влияние атомов в молекулах биоорганических соединений.
- •2.2. Кислотно-основные свойства органических соединений
- •2.3. Медико- биологическое значение изучения темы « Кислотно-основные
- •3.1. Виды изомерии
- •3.2. Структурная изомерия.
- •3.2.1. Изомерия скелета
- •3.3. Динамическая изомерия.
- •3. 3.1. Кето-енольная таутомерия.
- •3.3.2. Лактим-лактамная таутомерия
- •3.4 Пространственная изомерия
- •3.4.1 Геометрическая( цис, транс) изомерия
- •3.4.4. Медико-биологическое значение стереоизомерии
- •4.1 Классификация реакций в биоорганической химии
- •4.1.1 Типы разрыва химических связей
- •4.1.2. Гомолитический тип разрыва связей.
- •4.1.3. Гетеролитический тип разрыва связей
- •4.2.1. Реакции электрофильного присоединения в ряду алкенов(а е)
- •4.2.2. Реакции нуклеофильного присоединения
- •7.Реакции у α- углеродного атома в карбонильных соединениях
- •8. Альдольная конденсация
- •1. Реакция нитрования
- •2. Реация сульфирования
- •3.Реакция галогенирования
- •4. Реакция алкилирования
- •4.2.4. Реакции нуклеофильного замещения ( s n )
- •Лекция 5 карбоновые кислоты и их гетерофункциональные
- •5.1. Классификация карбоновых кислот
- •5.2. Строение карбоксильной группы
- •5.2.1. Значение величин рКа некоторых карбоновых кислот :
- •5.3. Химические свойства карбоновых кислот
- •Этилацетат
- •5.4. Характеристика отдельных представителей монокарбоновых кислот ,
- •Масляная кислота ( н- бутановая кислота)
- •5.5. Непредельные монокарбоновые кислоты
- •5.6. Дикарбоновые кислоты
- •5.7. Непредельные ди- и трикарбоновые кислоты
- •5.8. Гидроксикислоты
- •5.8.3. Дигидроксидикарбоновые кислоты
- •5.9. Oксокарбоновые кислоты( альдегидо -, кетокарбоновые кислоты)
- •5.10 Приложение : Происхождение названий карбоновых кислот Сn н2n о2
- •6.1. Определение « липиды»
- •6.3. Основные представители липидов
- •6.3.1.Природные высшие карбоновые кислоты
- •3. Тиоэфиры
- •4. Дегидрирование насыщенной кислоты в активной форме с участием фермента.
- •6.3.2. Триацилглицерины( триглицериды)
- •6.3.3. Фосфатиды ( фосфолипиды ) и фосфатидовая кислота
- •6. 4. Принципы создания липотропных лекарственных препаратов
- •6.5 . Строение и химический состав мембран клеток
- •7.1. Номенклатура, особенности пространственного и структурного строения природных аминокислот
- •7. 2 Классификация природных аминокислот
- •7. 3Физические свойства природных аминокислот
- •7.4 Поведение аминокислот в водных растворах: образование цвиттер-ионов, изменение заряда и электрофоретической подвижности в зависимости от рН-среды. Изоэлектрическая точка
- •7.5. Качественная реакция обнаружения аминокислот
- •7. 6 . Химические свойства аминокислот
- •7 .6. 1 Химические свойства аминокислот in vitro
- •7.6.2. Химические свойства аминокислот in vivo
- •7.7. Строение витамина в6 и механизм реакции с его участием
- •7.8. Реакция поликонденсации, образование полипептидов
- •7. 9. Медико - биологическое значение аминокислот
- •7. 10. Применение аминокислот и их производных в качестве
- •Незаменимые аминокислоты обозначены звездочкой*
- •8.1. Определения « пептид» «белок»
- •8.2. Классификация белков
- •8.3. Строение пептидов и белков.
- •8.3.1. Первичная структура белка
- •8.3.2. Вторичная структура белка
- •8.3.3. Третичная и четвертичная структура белка
- •8.4. Физико-химические свойства белка
- •8.4.1. Амфотерность - кислотно- основные свойства белков.
- •8.4.2. Денатурация белка
- •8.5.Качественные реакции обнаружения белков в биологических объектах.
- •8. 6. Приложение. История развития химии белков
- •9. 1. Классификация углеводов
- •9.2. Моносахариды
- •9.3. Изомерия моносахаридов. Стереоизомерия. L- и д- ряды. Диастереомеры, энантиомеры, эпимеры. Значение отдельных представителей
- •9.4 Химические свойства моносахаридов
- •9.4. 3. Фосфорные эфиры
- •9.4.3 Образование гликозидов
- •9.4.4. Реакции восстановления
- •9.4.5Реакции окисления моносахаридов
- •9.5. Биологическое значение моносахаридов и их производных.
- •10.1. Олигосахариды. Дисахариды
- •10.1.1. Нередуцирующие дисахариды
- •10.1.2 Редуцирующие дисахариды.
- •10.2. Полисахариды
- •10.2.1.Гомополисахариды
- •11.1. Классификация нуклеиновых кислот, отличия в строении и составе как следствие различных биологических функций
- •11.2.Азотистые основания нуклеиновых кислот
- •11.2.2. Азотистые основания- производные пурина( аденин, гуанин)
- •11.3. Нуклеозиды
- •11.4. Нуклеотиды
- •11.5.Строение нуклеиновых кислот
- •11.6.Метаболизм пуриновых соединений в клетке
- •11.7. Биологически важные соединения- мононуклеотиды, динуклеотиды- участники важнейших биохимических процессов
- •11.8 Приложение . Справочные материалы к теме лекции
- •1953 – Дж. Уотсон и ф. Крик - модель двухцепочечной структуры днк.
- •12.1 Современная концепция создания биоорганических соединений –
- •12.1.1. Особые химические требования к лекарственному веществу
- •12.1.3. . Пути поиска и создания лекарственных препаратов
- •12.1.4 Классификация лекарственных веществ
- •12.2 Синтез, химические и физическиесвойства лекарственных соединений
- •12.2.1. Производные 4-аминобензойной кислоты
- •12.2.2. Производные 4-аминобензолсульфокислоты
- •Hso3Cl сульфохлорирование h2nr’ амин
- •Ацетиланилин
- •12. 2. 3. Лекарственные средства, производные салициловой кислоты
- •12.2.4. Лекарственные средства, производные 4 –аминофенола
- •12.2.5 Лекарственные средства на основе пиридинкарбоновых кислот
- •12. 2. 6. Производные пиримидина
- •12. 2 .7. Производные пурина- кофеин, теофиллин, теобромин
- •13.1. Номенклатура алкалоидов
- •13.2. Классификация алкалоидов
- •13. 3. Функции алкалоидов
- •13.4. Содержание в растениях
- •13.5. Качественные реакции обнаружения алкалоидов
- •13.6. Фармакологическая активность- общий взгляд
- •13.7. Отдельные представители
- •13. 7.1. Алкалоиды группы фенилэтиламина
- •7.2 Производные пяти – и шестичленных гетероциклических соединений
- •137.3. Группа тропана
- •13.8. Витамины
- •Действие в организме
- •Стадии зрительного процесса на сетчатке глаза
- •14.1. Полимеры-определение. Виды полимеров
- •14. 2. Классификация вмс
- •14.3. Реакции полимеризации
- •14.3.1. Номенклатура полимеров.
- •14.3.2 . Общая характеристика мономеров.
- •14.3.3. Механизмы реакции полимеризации
- •14.4. Радикальная полимеризация
- •14.5. Ионная полимеризация
- •14.5.1. Катионная полимеризация
- •14.5.2. Анионная полимеризация
- •14.6. Координационная полимеризация
- •14.7.1. Блочная полимеризация
- •14.7.2. Эмульсионная полимеризация
- •14.7.3. Полимеризация в растворе
- •14.8. Конфигурация полимеров
- •14. 10. Физическое состояние полимеров
- •14.10.1. Аморфные полимеры
- •14 10.2. Кристаллические полимеры
- •14.11. Натуральный каучук
- •14.12 . Конденсационные полимеры
- •14. 13 Основные представители вмс
- •2. Структурные формулы биоорганических соединений
- •Сопряженные соединения
- •Карбоновые кислоты (указаны тривиальные названия)
- •Незаменимые аминокислоты обозначены звездочкой -*
- •Углеводы и их производные
- •Азотистые основания и их производные
- •1. Теоретические положения строения и свойств биоорганических
- •2. Важнейшие биополимеры организма
- •3. Липиды и низкомолекулярные регуляторы метаболизма.Важнейшие группы лекарственных средств
- •Курс лекций по биоорганической химии
- •060103 – Педиатрия
- •060104 –Медико-профилактическое дело
- •060105 - Стоматология
14.12 . Конденсационные полимеры
Образуются в реакции поликонденсации, которая сопровождается выделением низкомолекулярных веществ( вода, аммиак, спирты).
Если в реакции участвует один бифункциональный мономер, то происходит процесс гомополиконденсации ( полиамиды, пептиды, полиэфиры) .
В реакции гетерополиконденсациидва разных мономера, каждый из которых содержит две функциональные группы( полиэфиры-простые и сложные, полиамиды, полисилоксаны, полиуретаны, фенолформальдегидные смолы)
Гомополиконденсация
А) Образование сложного эфира
НО – R- СООН + НО –R- СООН + НО –R- СООН +…———> х Н2О +
НО-[ R- С(О)О –R- С(О)О –R- С(О)О –R- С(О)О –R] –СООН
Гетерополиконденсация
n(NH2—R—NH2) +n( НООС– Х– СООН) …———>nН2О +
диаминдикарбоновая кислота
NH2—(R—NH—ОС– Х)n – СООН
Полиамид
При рассмотрении механизма поликонденсации принимают, что
реакционная способность не зависит от размера молекул
не зависит от вязкости среды
14. 13 Основные представители вмс
Полиакрилат и его эфиры
( - СН 2–СН- )nУстойчивы к действию света, кислорода.
| Чем больше алкильный радикал, тем меньше Т пл, боль
СООН( COOR) ше эластичность полимера.
Используют в технических целях и стоматологии
для изготовления протезов зубов.
Поливиниловый спирт
Получают гидролизом поливинилацетата.
(- СН 2–СН- )n+nH2O———>(- СН2–СН- )n+nCH3COOH
| |
ОСОСН3 OH
поливинилиацетат поливиниловый спирт
3% раствор поливинилового спирта( М=10 000 -12 000)- препарат полидез( Polidesum)– плазмозаменитель. Применяется в качестве детоксицирующего средства.
При добавлении йода к раствору поливинилового спирта образуется темно-синий раствор- препарат йодинол. Применяют в виде 1% раствора, содержащего о,1% йода и
0,9 % поливинилового спирта. Используют как наружное средство при тонзиллите, отите, трофических и варикозных язвах.
Изменение окраски йода имеет такой же механизм, как при добавлении йода к крахмалу.
Поливинилбутиловый спирт
Из него готовят лекарственный препарат Винилин – бальзам Шостаковского.
(- СН 2–СН- )nГустая вязкая жидкость, практически нерастворимая в воде.
| Применяют наружно при ожогах, отморожениях, мастите,
ОС4Н9 ранах, вовнутрь при язвенной болезни желудка. 12-перстной
кишки. Оказывает обволакивающее, противовоспалительное
действие, способствует регенерации тканей.
Поливинилхлорид ( ПХВ) Твердое вещество, стоек к действию щелочей.
( -СН 2–СН- )nПолучают полимеризацией в суспензии, эмульсии.
| Применяют для изготовления костюмов
С1 химической и радиационной защиты, в медицине фартуков,
перчаток, бахил.
Полиметакрилат
Получают полимеризацией метакриловой( метилакриловой) кислоты. Обладает высокими оптическими свойствами, совместим с организмом человека, используют для изготовления контактных линз для глаз.
Поликарбонаты.
Представители поликонденсационных пластиков. Сложные эфиры угольной кислоты и дигидроксисоединений.
НО- R- О- С –О-R- О - С - О - Полимер оптически прозрачен, устойчив к
| | | | действию света видимой и УФ- части спектра,
О О физиологически инертен.
Используется для получения фильтров крови,
костных протезов, оболочек для лекарственных
препаратов пролонгированного действия, линз
Фторопласты
Полимеры, мономерами которых являются фторэтены .
Политетрафтрэтилен( тефлон, фторопласт-4)
(–СF2– СF2–)n Твердое кристаллическое вещество молочно-белого цвета .
М 500 000 -2 000 000. Термостойкое, температура разложения
выше 4150. Высокая химическая стойкость, водопоглощение прак-
тически равно нулю, не набухает, не растворяется в воде и других
растворителях, кислотах, щелочах. Подвергается всем видам
механической обработки. В медицине применят для изготовления
контейнеров для хранения биологического материала, лабораторной
посуды для биохимических и клинических исследований.
Эфиры целлюлозы
Напоминаем: формула целлюлозы ( С6Н10О5 )nили [С6Н7О2( ОН )3 ] n
Получают из целлюлозы: простые эфиры – алкилированием, сложные эфиры- ацилированием.Эти соединения при растворении в воде сильно набухают, образуют устойчивые растворы с различной степенью вязкости. Обладают поверхностно-активным действием, хорошие адсорбенты, не оказывают раздражающего действия на организм – физиологически совместимы. Используют как загустители в производстве лечебных и косметических кремов, паст, получают тонкие пленки для пищевой и медицинской промышленности.
Оксиэтилцеллюлоза [С6Н7О2( О -CH2-CН2-OH)3 ] n
Карбоксиэтилцеллюлоза [С6Н7О2( О -CH2-CН2-СООН )3 ] n или
натриевая соль [С6Н7О2( О -CH2-CН2-СОONa)3 ] n
Для проверки усвоения темы рекомендуем ответить на вопросы:
1. Какие химические изменения могут произойти с изделием из полиметилметакрилата при длительном нахождении его в кислой среде?
2. В процессе изготовления полимерной пломбы в зубе врач предложил пациенту надеть
на глаза светозащитные очки. Какой способ полимеризации был использован? Могла ли
находиться в составе композита для изготовления пломбы перекись бензоила? Объясните
роль этой добавки. Запишите реакцию полимеризации стирола с участием перекиси
бензоила.
В медицине долгое время применяли 6% водно-солевой раствор
поливинилпирролидона с низкой степенью полимеризации ( М 12 000 – 27 000 ) для детоксикации организма при отравлениях, инфекционных заболеваниях.
-Запишите формулу мономера N– винил -2-оксопиррола (N- винилпирролидона) и схему реакции полимеризации.
- Рассчитайте молекулярную массу мономера и определите степени полимеризации полимера по граничным величинам выше указанной молекулярной массы.
- Как вы думаете, может ли этот мономер или полимер образовать соль в кислой среде ?
4. Какая основная причина старения полимерных изделий из природного каучука? полистирола, полученного блочной полимеризацией?
5. В промышленности карбоксиэтилцеллюлозу получают взаимодействием целлюлозы с хлоруксусной кислотой. Запишите реакцию полной этерификации на примере фрагмента целлюлозы ( из двух остатков глюкозы). Какой образуется эфир: простой или сложный? Какой механизм этой реакции?
ПРИЛОЖЕНИЕ
ИСТОРИЧЕСКИЕ ДАТЫ ЗНАМЕНАТЕЛЬНЫХ ОТКРЫТИЙ В
БИООРГАНИЧЕСКОЙ ХИМИИ
( Х1Х и первая половина ХХ вв)
-
дата
Историческое событие
1811
К.С. Кирхгоф получил виноградный сахар( глюкозу) из крахмала
1815
Ж. Био установил существование 2лево» и « право»- вращающих растворов веществ
1815
Ф. Штромейер открыл качественную реакцию на крахмал с йодом
1820
Велер синтезировал щавелевую кислоту из неорганического соединения дициана
1860
Л. Пастер обобщил результаты исследований оптически активных веществ
1861
А.М. Бутлеров сформулировал теорию строения органических соединений
861
Й. Лошмидт предложил структурные графические формулы
1861
А.М. Бутлеров объяснил явление изомерии на основе теории строения органических соединений
1862
Э. Эрленмейер высказал идею о существовании двойной связи в этене, тройной в ацетилене
1864
А. Крум-Браун ввел изображение химических связей черточками
1865
Д.И.Менделеев заложил основу понятия « водородная связь». Изучая взаимодействие в системе « спирт- вода».
1862 - 1865
А. Кекуле предложил классификацию: « насыщенные»,
« ненасыщенные» « ароматические» соединения».
1866
М. Бертло осуществил синтез бензола тримеризацией ацетилена
1868
Г. Вихельхауз ввел понятие « валентность».
1868
К. Шерлеммер заключил, что все 4 валентности у углерода в метане равноценны
1869
В.В. Марковников развил представления о взаимодействии атомов в молекулах, сформировал правила о направлениях реакций присоединения, отщепления
1869
А. Ладенбург доказал равноценность всех атомов водорода в бензоле
1870
Ю. Либих предложил теорию действия ферментов
1870
Н. И. Любавин выдвинул теорию об аминокислотном строении белковэтене, тройной в ацетиленех, сформировал направление
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1872
А. Кекуле изобразил молекулу бензола с тремя двойными связями.
1874
Я. Вант-Гофф и А. Ле Бель развили теорию о тетраэдрическом строении атома углерода в метане
1874
Я. Вант-Гофф сформулировал основные принципы кинетики химических реакций
1885
К. Лаар ввел понятие « таутомерия»
1886-7
В. Оствальд разработал теорию « кислотно- основного катализа»
1888
К. Оверс и В. Мейер предложили термин « стереохимия»
1889
С. Аррениус ввел понятие «энергия активация»
1890
Н.А. Меншуткин доказал влияние растворителя на скорость протекающей в нем химической реакции
1890
Э. Фишер разработал номенклатуру, классификацию и рациональные формулы углеводов
-
1892
На международном съезде в Женеве приняли номенклатуру органических соединений( женевская номенклатура)
1897
Дж. Томсон и независимо Э. Вихорт открыли электрон
1908
У. Рамзай высказал идею. Что электрон осуществляет связь между атомамиэтене, тройной в ацетиленех, сформировал направление
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1908
И. Штарк выдвинул теорию химических связей в органических соединениях
1911
Г. Фрай предложил электронные формулы органических соединений
1913
М. боденштейн заложил основы теории цепных процессов
1915
И. Штарк ввел понятие « валентные электроны»
1916
Г. Льюис развил идею ковалентной химической связи
1920
Р. Герцог, В. Янке, М. Поляни впервые определили структуру органического вещества- целлюлозы- методом рентгеноструктурного анализа
1922
Р. Робинсон высказал идею об « электромерном» ( индуктивном) и
« мезомерном» механизмах смещения электронной плотности в органических молекулах
1922-3
И. Бренстед и Г. Льюис развили теорию кислот и оснований в приложении к органическим соединениям
1931
Э. Хюккель заложл основы квантовой химии органических соединений
1931
Ф. Хунд ввел понятия о σ - , π – связях в органических молекулах
1931
Э. Хюккель сформулировал правило ( 4п+ 2 ) для ароматических соединений
1932
Р. Малликен ввел понятие « молекулярная орбиталь».
1932
Л. Полинг предложил понятие «электроотрицательность» и шкалу э.о.
1933
Ч. Ингольд сформулировал принципы теории электронных смещений
1939
Р. Малликен ввел термин « сверхсопряжение» ( гиперконъюгация)
1941
И. Сваргольм предложил « молекулярные диаграммы» органических соединений - структурные формулы, в которых над атомами записаны знаки частичных зарядов
1947
Г. Шварценбах предложил метод определения енолов в кето-енольной смеси изомеров.
1951
Л. Полинг и Р Кори открыли вторичную структуру белка
1953
Ф. Крик и Дж. Уотсон открыли структуру ДНК- двойную спираль