
- •Глава1. История развития биоорганической химии …………………………………
- •Глава 2. Лекции по биоорганической химии …………………………………………
- •Глава 1
- •1.. Характеристика химических связей в биоорганических соединениях
- •2. Сопряженные системы
- •2.1. Общие понятия о строении сопряженных систем
- •2 . 3 . Циклические сопряженные системы. Ароматичность
- •1. Устойчивость к действию окислителя перманганата калия в растворе.
- •3. Способность к реакциям замещения в растворе по ионному( катионному,
- •2.3.1. Современные представления о строении бензола
- •2. 3. 2. Медико-биологическое значение карбоциклических ароматических
- •2. 3. 3. Гетероциклические ароматические соединения
- •2.1. Взаимное влияние атомов в молекулах биоорганических соединений.
- •2.2. Кислотно-основные свойства органических соединений
- •2.3. Медико- биологическое значение изучения темы « Кислотно-основные
- •3.1. Виды изомерии
- •3.2. Структурная изомерия.
- •3.2.1. Изомерия скелета
- •3.3. Динамическая изомерия.
- •3. 3.1. Кето-енольная таутомерия.
- •3.3.2. Лактим-лактамная таутомерия
- •3.4 Пространственная изомерия
- •3.4.1 Геометрическая( цис, транс) изомерия
- •3.4.4. Медико-биологическое значение стереоизомерии
- •4.1 Классификация реакций в биоорганической химии
- •4.1.1 Типы разрыва химических связей
- •4.1.2. Гомолитический тип разрыва связей.
- •4.1.3. Гетеролитический тип разрыва связей
- •4.2.1. Реакции электрофильного присоединения в ряду алкенов(а е)
- •4.2.2. Реакции нуклеофильного присоединения
- •7.Реакции у α- углеродного атома в карбонильных соединениях
- •8. Альдольная конденсация
- •1. Реакция нитрования
- •2. Реация сульфирования
- •3.Реакция галогенирования
- •4. Реакция алкилирования
- •4.2.4. Реакции нуклеофильного замещения ( s n )
- •Лекция 5 карбоновые кислоты и их гетерофункциональные
- •5.1. Классификация карбоновых кислот
- •5.2. Строение карбоксильной группы
- •5.2.1. Значение величин рКа некоторых карбоновых кислот :
- •5.3. Химические свойства карбоновых кислот
- •Этилацетат
- •5.4. Характеристика отдельных представителей монокарбоновых кислот ,
- •Масляная кислота ( н- бутановая кислота)
- •5.5. Непредельные монокарбоновые кислоты
- •5.6. Дикарбоновые кислоты
- •5.7. Непредельные ди- и трикарбоновые кислоты
- •5.8. Гидроксикислоты
- •5.8.3. Дигидроксидикарбоновые кислоты
- •5.9. Oксокарбоновые кислоты( альдегидо -, кетокарбоновые кислоты)
- •5.10 Приложение : Происхождение названий карбоновых кислот Сn н2n о2
- •6.1. Определение « липиды»
- •6.3. Основные представители липидов
- •6.3.1.Природные высшие карбоновые кислоты
- •3. Тиоэфиры
- •4. Дегидрирование насыщенной кислоты в активной форме с участием фермента.
- •6.3.2. Триацилглицерины( триглицериды)
- •6.3.3. Фосфатиды ( фосфолипиды ) и фосфатидовая кислота
- •6. 4. Принципы создания липотропных лекарственных препаратов
- •6.5 . Строение и химический состав мембран клеток
- •7.1. Номенклатура, особенности пространственного и структурного строения природных аминокислот
- •7. 2 Классификация природных аминокислот
- •7. 3Физические свойства природных аминокислот
- •7.4 Поведение аминокислот в водных растворах: образование цвиттер-ионов, изменение заряда и электрофоретической подвижности в зависимости от рН-среды. Изоэлектрическая точка
- •7.5. Качественная реакция обнаружения аминокислот
- •7. 6 . Химические свойства аминокислот
- •7 .6. 1 Химические свойства аминокислот in vitro
- •7.6.2. Химические свойства аминокислот in vivo
- •7.7. Строение витамина в6 и механизм реакции с его участием
- •7.8. Реакция поликонденсации, образование полипептидов
- •7. 9. Медико - биологическое значение аминокислот
- •7. 10. Применение аминокислот и их производных в качестве
- •Незаменимые аминокислоты обозначены звездочкой*
- •8.1. Определения « пептид» «белок»
- •8.2. Классификация белков
- •8.3. Строение пептидов и белков.
- •8.3.1. Первичная структура белка
- •8.3.2. Вторичная структура белка
- •8.3.3. Третичная и четвертичная структура белка
- •8.4. Физико-химические свойства белка
- •8.4.1. Амфотерность - кислотно- основные свойства белков.
- •8.4.2. Денатурация белка
- •8.5.Качественные реакции обнаружения белков в биологических объектах.
- •8. 6. Приложение. История развития химии белков
- •9. 1. Классификация углеводов
- •9.2. Моносахариды
- •9.3. Изомерия моносахаридов. Стереоизомерия. L- и д- ряды. Диастереомеры, энантиомеры, эпимеры. Значение отдельных представителей
- •9.4 Химические свойства моносахаридов
- •9.4. 3. Фосфорные эфиры
- •9.4.3 Образование гликозидов
- •9.4.4. Реакции восстановления
- •9.4.5Реакции окисления моносахаридов
- •9.5. Биологическое значение моносахаридов и их производных.
- •10.1. Олигосахариды. Дисахариды
- •10.1.1. Нередуцирующие дисахариды
- •10.1.2 Редуцирующие дисахариды.
- •10.2. Полисахариды
- •10.2.1.Гомополисахариды
- •11.1. Классификация нуклеиновых кислот, отличия в строении и составе как следствие различных биологических функций
- •11.2.Азотистые основания нуклеиновых кислот
- •11.2.2. Азотистые основания- производные пурина( аденин, гуанин)
- •11.3. Нуклеозиды
- •11.4. Нуклеотиды
- •11.5.Строение нуклеиновых кислот
- •11.6.Метаболизм пуриновых соединений в клетке
- •11.7. Биологически важные соединения- мононуклеотиды, динуклеотиды- участники важнейших биохимических процессов
- •11.8 Приложение . Справочные материалы к теме лекции
- •1953 – Дж. Уотсон и ф. Крик - модель двухцепочечной структуры днк.
- •12.1 Современная концепция создания биоорганических соединений –
- •12.1.1. Особые химические требования к лекарственному веществу
- •12.1.3. . Пути поиска и создания лекарственных препаратов
- •12.1.4 Классификация лекарственных веществ
- •12.2 Синтез, химические и физическиесвойства лекарственных соединений
- •12.2.1. Производные 4-аминобензойной кислоты
- •12.2.2. Производные 4-аминобензолсульфокислоты
- •Hso3Cl сульфохлорирование h2nr’ амин
- •Ацетиланилин
- •12. 2. 3. Лекарственные средства, производные салициловой кислоты
- •12.2.4. Лекарственные средства, производные 4 –аминофенола
- •12.2.5 Лекарственные средства на основе пиридинкарбоновых кислот
- •12. 2. 6. Производные пиримидина
- •12. 2 .7. Производные пурина- кофеин, теофиллин, теобромин
- •13.1. Номенклатура алкалоидов
- •13.2. Классификация алкалоидов
- •13. 3. Функции алкалоидов
- •13.4. Содержание в растениях
- •13.5. Качественные реакции обнаружения алкалоидов
- •13.6. Фармакологическая активность- общий взгляд
- •13.7. Отдельные представители
- •13. 7.1. Алкалоиды группы фенилэтиламина
- •7.2 Производные пяти – и шестичленных гетероциклических соединений
- •137.3. Группа тропана
- •13.8. Витамины
- •Действие в организме
- •Стадии зрительного процесса на сетчатке глаза
- •14.1. Полимеры-определение. Виды полимеров
- •14. 2. Классификация вмс
- •14.3. Реакции полимеризации
- •14.3.1. Номенклатура полимеров.
- •14.3.2 . Общая характеристика мономеров.
- •14.3.3. Механизмы реакции полимеризации
- •14.4. Радикальная полимеризация
- •14.5. Ионная полимеризация
- •14.5.1. Катионная полимеризация
- •14.5.2. Анионная полимеризация
- •14.6. Координационная полимеризация
- •14.7.1. Блочная полимеризация
- •14.7.2. Эмульсионная полимеризация
- •14.7.3. Полимеризация в растворе
- •14.8. Конфигурация полимеров
- •14. 10. Физическое состояние полимеров
- •14.10.1. Аморфные полимеры
- •14 10.2. Кристаллические полимеры
- •14.11. Натуральный каучук
- •14.12 . Конденсационные полимеры
- •14. 13 Основные представители вмс
- •2. Структурные формулы биоорганических соединений
- •Сопряженные соединения
- •Карбоновые кислоты (указаны тривиальные названия)
- •Незаменимые аминокислоты обозначены звездочкой -*
- •Углеводы и их производные
- •Азотистые основания и их производные
- •1. Теоретические положения строения и свойств биоорганических
- •2. Важнейшие биополимеры организма
- •3. Липиды и низкомолекулярные регуляторы метаболизма.Важнейшие группы лекарственных средств
- •Курс лекций по биоорганической химии
- •060103 – Педиатрия
- •060104 –Медико-профилактическое дело
- •060105 - Стоматология
12. 2. 3. Лекарственные средства, производные салициловой кислоты
Аспирин-сложный эфир уксусной и салициловой кислоты, который обычно получают взаимодействием салициловой кислоты с ангидридом уксусной кислоты:
+
(СН3СО)2О——>
+
СН3СООН
Салициловая кислота ацетилсалициловая кислота
Ацетилсалициловая кислота - кристаллическое вещество, кристаллизуется в виде мелких игольчатых кристаллов, слабокислого вкуса. Довольно плохо растворима в воде (1:300), так как ацетильный остаток уменьшает гидрофильность, но растворима в щелочах, и в органических растворителях( спирте ), образует соли ( салицилат натрия или калия)
Аспирин как сложный эфир, очень легко гидролизуется при кипячении водой даже без прибавления обычных катализаторов – минеральных кислот или щелочей. Более того, уже при стоянии во влажном воздухе происходит гидролиз аспирина на уксусную и салициловую кислоты:
Для проверки доброкачественности аспирина( отсутствия гидролиза) удобна реакция с хлоридом железа: аспирин не дает окрашивания с данным реактивом, тогда как салициловая кислота дает качественную реакцию на свободный фенольный гидроксил.
12.2.4. Лекарственные средства, производные 4 –аминофенола
4-Аминофенол( п-аминофенол)- твердое кристаллическое вещество. Т пл = 1800С
Амфотерное соединение, реагирует с кислотами и щелочами, образуя соответствующие соли.
Лекарственное соединение парацетамол получают ацилированием 4-аминофенола. уксусным ангидридом. Реакция идет по более нуклеофильной аминогруппе. Препарат растворим в спирте, не растворим в воде.
НО-С6Н4–NН2+ ( СН3СО)2О ———> НО – С6Н4–NН-СО- СН3+ СН3СООН
парацетамол
Парацетамол
|
Фенацетин |
Фенацетин в организме в клетках печени легко превращается в парацетамол.
Оба лекарственных препарата оказывают жаропонижающее и болеутоляющее действие.
Применяют при невралгических и головных болях.
Синтез фенацетина
+ НNО3+ СН3С1
НО-С6Н5 ——нитрование—> НО-С6Н5 - NО2 —алкилирование——>
Фенол 4-нитрофенол
+ 2Н + ( СН3СО)2О
С 2Н5О-С6Н5 - NО2 ——восстановление—> С2Н5О-С6Н5 - NН2 —ацилирование——>
1- нитро-4-этоксинибензол 4-этоксианилин
С 2Н5О-С6Н5 - NН- СО- СН3
фенацетин
12.2.5 Лекарственные средства на основе пиридинкарбоновых кислот
В середине 1990 годов исполнилось 150 лет с момента открытия пиридина. Развитие химии лекарственных соединений пиридинового ряда началось более 70 лет назад, . Около 5% всех лекарственных средств содержат пиридиновый цикл, а среди природных биологически активных веществ главная роль принадлежит производным пиридина : витаминам В6, РР, коферментам НАД и НАДФ, алкалоидам никотину, анабазину.
Витамин РР- амид никотиновой кислоты(3- пиридинкарбоновой кислоты)
и его производные.
Поиск лекарственных препаратов в ряду пиридина начался именно с этого природного соединения, как только была выяснена его биологическая роль.
Никотинамид ( витамин РР) применяют для профилактики тяжелого алиментарного заболевания пеллагры( пеллагра- итал- шершавая кожа, РР – предотвращающий пеллагру –англ - pellagra preventing).Развитие пеллагры сопровождается расстройствами со стороны желудочно-кишечного тракта, повышенной чувствительностью к солнечным лучам., заболеваниями кожи, расстройствами и потерей памяти. Все симптомы можно объяснить участием никотинамида в образовании коферментов НАД и НАДФ , которые входят в состав более 250 ферментов нашего организма, катализирующих процессы энергетического . углеводного, липидного, белкового обмена, синтез компонентов соединительной ткани, нейромедиаторов, гормонов.
Никотиновая кислота |
Никотинамид |
Уже в 1920-х годах был синтезирован диэтиамид никотиновой кислоты, который стали применять для лечения нарушений кровообращения в виде 25% раствора в воде - препараткордиамин.Кордиамин получают из никотиновой кислоты.
R–COOH+HN(С2Н5)2 ———> R–CO—N(С2Н5)2 + Н2О
никотиновая кислота диэтиламид никотиновой кислоты
Начиная с 1945 г. в практике врачей - фтизиатров появились противотуберкулезные препараты- гидразиды и тиоамиды пиридинкарбоновых кислот.
В период 1960 – 1989 гг. были созданы спазмолитики, нейролептики, антигистаминные препараты на основе пиридина.
Противотуберкулезные препараты
В 1952 г. обнаружили, что туберкулезные микобактерии (Micobacteriumtuberculosis) чувствительны к действиюизониазида -гидразида изоникотиновой кислоты ( изоникотиновая кислота – 4-пиридинкарбоновая кислота, отличается от никотиновой кислоты положением карбоксильной группы и является антиметаболитом витаминов РР и В6 ). Известно, что длительное применение изониазида сопровождается побочными изменениями в организме, характерными для гиповитаминозов( недостаточности) вышеназванных витаминов.
Микобактерии и многие другие микроорганизмы вырабатывают резистентность ( устойчивость) к направленным против них лекарственным препаратам, что требует обновления набора лекарств, поэтому изониазидна определенное время выпадал из поля зрения врачей. Но спустя несколько десятилетий устойчивость может исчезать, и в настоящее времяизониазидвновь применяется в медицинской практике.
Нейролептик – ипразид
В 1957 г. при изучении противотуберкулезного действия производных изоникотиновой кислоты обнаружили, что они оказывают эйфоризирующее действие, у больных туберкулезом вызывали общее возбуждение и эйфорию( -euphoria- греч - eu - хорошо, pherǒ –переношу- повышенное радостное настроение)
Ипразид также является производным 4-пиридинкабоновой кислоты – β- N- изопропилгидразид изоникотиновой кислоты. Это вещество кристаллический порошок, хорошо растворимый в воде и спирте.
Обладает мощным антидепрессивным действием, вызывая накопление в некоторых участках мозга нейромедиатора норадреналина, участвует в обмене серотонина,
усиливает действие снотворных средств, других нейролептиков.