
- •Глава1. История развития биоорганической химии …………………………………
- •Глава 2. Лекции по биоорганической химии …………………………………………
- •Глава 1
- •1.. Характеристика химических связей в биоорганических соединениях
- •2. Сопряженные системы
- •2.1. Общие понятия о строении сопряженных систем
- •2 . 3 . Циклические сопряженные системы. Ароматичность
- •1. Устойчивость к действию окислителя перманганата калия в растворе.
- •3. Способность к реакциям замещения в растворе по ионному( катионному,
- •2.3.1. Современные представления о строении бензола
- •2. 3. 2. Медико-биологическое значение карбоциклических ароматических
- •2. 3. 3. Гетероциклические ароматические соединения
- •2.1. Взаимное влияние атомов в молекулах биоорганических соединений.
- •2.2. Кислотно-основные свойства органических соединений
- •2.3. Медико- биологическое значение изучения темы « Кислотно-основные
- •3.1. Виды изомерии
- •3.2. Структурная изомерия.
- •3.2.1. Изомерия скелета
- •3.3. Динамическая изомерия.
- •3. 3.1. Кето-енольная таутомерия.
- •3.3.2. Лактим-лактамная таутомерия
- •3.4 Пространственная изомерия
- •3.4.1 Геометрическая( цис, транс) изомерия
- •3.4.4. Медико-биологическое значение стереоизомерии
- •4.1 Классификация реакций в биоорганической химии
- •4.1.1 Типы разрыва химических связей
- •4.1.2. Гомолитический тип разрыва связей.
- •4.1.3. Гетеролитический тип разрыва связей
- •4.2.1. Реакции электрофильного присоединения в ряду алкенов(а е)
- •4.2.2. Реакции нуклеофильного присоединения
- •7.Реакции у α- углеродного атома в карбонильных соединениях
- •8. Альдольная конденсация
- •1. Реакция нитрования
- •2. Реация сульфирования
- •3.Реакция галогенирования
- •4. Реакция алкилирования
- •4.2.4. Реакции нуклеофильного замещения ( s n )
- •Лекция 5 карбоновые кислоты и их гетерофункциональные
- •5.1. Классификация карбоновых кислот
- •5.2. Строение карбоксильной группы
- •5.2.1. Значение величин рКа некоторых карбоновых кислот :
- •5.3. Химические свойства карбоновых кислот
- •Этилацетат
- •5.4. Характеристика отдельных представителей монокарбоновых кислот ,
- •Масляная кислота ( н- бутановая кислота)
- •5.5. Непредельные монокарбоновые кислоты
- •5.6. Дикарбоновые кислоты
- •5.7. Непредельные ди- и трикарбоновые кислоты
- •5.8. Гидроксикислоты
- •5.8.3. Дигидроксидикарбоновые кислоты
- •5.9. Oксокарбоновые кислоты( альдегидо -, кетокарбоновые кислоты)
- •5.10 Приложение : Происхождение названий карбоновых кислот Сn н2n о2
- •6.1. Определение « липиды»
- •6.3. Основные представители липидов
- •6.3.1.Природные высшие карбоновые кислоты
- •3. Тиоэфиры
- •4. Дегидрирование насыщенной кислоты в активной форме с участием фермента.
- •6.3.2. Триацилглицерины( триглицериды)
- •6.3.3. Фосфатиды ( фосфолипиды ) и фосфатидовая кислота
- •6. 4. Принципы создания липотропных лекарственных препаратов
- •6.5 . Строение и химический состав мембран клеток
- •7.1. Номенклатура, особенности пространственного и структурного строения природных аминокислот
- •7. 2 Классификация природных аминокислот
- •7. 3Физические свойства природных аминокислот
- •7.4 Поведение аминокислот в водных растворах: образование цвиттер-ионов, изменение заряда и электрофоретической подвижности в зависимости от рН-среды. Изоэлектрическая точка
- •7.5. Качественная реакция обнаружения аминокислот
- •7. 6 . Химические свойства аминокислот
- •7 .6. 1 Химические свойства аминокислот in vitro
- •7.6.2. Химические свойства аминокислот in vivo
- •7.7. Строение витамина в6 и механизм реакции с его участием
- •7.8. Реакция поликонденсации, образование полипептидов
- •7. 9. Медико - биологическое значение аминокислот
- •7. 10. Применение аминокислот и их производных в качестве
- •Незаменимые аминокислоты обозначены звездочкой*
- •8.1. Определения « пептид» «белок»
- •8.2. Классификация белков
- •8.3. Строение пептидов и белков.
- •8.3.1. Первичная структура белка
- •8.3.2. Вторичная структура белка
- •8.3.3. Третичная и четвертичная структура белка
- •8.4. Физико-химические свойства белка
- •8.4.1. Амфотерность - кислотно- основные свойства белков.
- •8.4.2. Денатурация белка
- •8.5.Качественные реакции обнаружения белков в биологических объектах.
- •8. 6. Приложение. История развития химии белков
- •9. 1. Классификация углеводов
- •9.2. Моносахариды
- •9.3. Изомерия моносахаридов. Стереоизомерия. L- и д- ряды. Диастереомеры, энантиомеры, эпимеры. Значение отдельных представителей
- •9.4 Химические свойства моносахаридов
- •9.4. 3. Фосфорные эфиры
- •9.4.3 Образование гликозидов
- •9.4.4. Реакции восстановления
- •9.4.5Реакции окисления моносахаридов
- •9.5. Биологическое значение моносахаридов и их производных.
- •10.1. Олигосахариды. Дисахариды
- •10.1.1. Нередуцирующие дисахариды
- •10.1.2 Редуцирующие дисахариды.
- •10.2. Полисахариды
- •10.2.1.Гомополисахариды
- •11.1. Классификация нуклеиновых кислот, отличия в строении и составе как следствие различных биологических функций
- •11.2.Азотистые основания нуклеиновых кислот
- •11.2.2. Азотистые основания- производные пурина( аденин, гуанин)
- •11.3. Нуклеозиды
- •11.4. Нуклеотиды
- •11.5.Строение нуклеиновых кислот
- •11.6.Метаболизм пуриновых соединений в клетке
- •11.7. Биологически важные соединения- мононуклеотиды, динуклеотиды- участники важнейших биохимических процессов
- •11.8 Приложение . Справочные материалы к теме лекции
- •1953 – Дж. Уотсон и ф. Крик - модель двухцепочечной структуры днк.
- •12.1 Современная концепция создания биоорганических соединений –
- •12.1.1. Особые химические требования к лекарственному веществу
- •12.1.3. . Пути поиска и создания лекарственных препаратов
- •12.1.4 Классификация лекарственных веществ
- •12.2 Синтез, химические и физическиесвойства лекарственных соединений
- •12.2.1. Производные 4-аминобензойной кислоты
- •12.2.2. Производные 4-аминобензолсульфокислоты
- •Hso3Cl сульфохлорирование h2nr’ амин
- •Ацетиланилин
- •12. 2. 3. Лекарственные средства, производные салициловой кислоты
- •12.2.4. Лекарственные средства, производные 4 –аминофенола
- •12.2.5 Лекарственные средства на основе пиридинкарбоновых кислот
- •12. 2. 6. Производные пиримидина
- •12. 2 .7. Производные пурина- кофеин, теофиллин, теобромин
- •13.1. Номенклатура алкалоидов
- •13.2. Классификация алкалоидов
- •13. 3. Функции алкалоидов
- •13.4. Содержание в растениях
- •13.5. Качественные реакции обнаружения алкалоидов
- •13.6. Фармакологическая активность- общий взгляд
- •13.7. Отдельные представители
- •13. 7.1. Алкалоиды группы фенилэтиламина
- •7.2 Производные пяти – и шестичленных гетероциклических соединений
- •137.3. Группа тропана
- •13.8. Витамины
- •Действие в организме
- •Стадии зрительного процесса на сетчатке глаза
- •14.1. Полимеры-определение. Виды полимеров
- •14. 2. Классификация вмс
- •14.3. Реакции полимеризации
- •14.3.1. Номенклатура полимеров.
- •14.3.2 . Общая характеристика мономеров.
- •14.3.3. Механизмы реакции полимеризации
- •14.4. Радикальная полимеризация
- •14.5. Ионная полимеризация
- •14.5.1. Катионная полимеризация
- •14.5.2. Анионная полимеризация
- •14.6. Координационная полимеризация
- •14.7.1. Блочная полимеризация
- •14.7.2. Эмульсионная полимеризация
- •14.7.3. Полимеризация в растворе
- •14.8. Конфигурация полимеров
- •14. 10. Физическое состояние полимеров
- •14.10.1. Аморфные полимеры
- •14 10.2. Кристаллические полимеры
- •14.11. Натуральный каучук
- •14.12 . Конденсационные полимеры
- •14. 13 Основные представители вмс
- •2. Структурные формулы биоорганических соединений
- •Сопряженные соединения
- •Карбоновые кислоты (указаны тривиальные названия)
- •Незаменимые аминокислоты обозначены звездочкой -*
- •Углеводы и их производные
- •Азотистые основания и их производные
- •1. Теоретические положения строения и свойств биоорганических
- •2. Важнейшие биополимеры организма
- •3. Липиды и низкомолекулярные регуляторы метаболизма.Важнейшие группы лекарственных средств
- •Курс лекций по биоорганической химии
- •060103 – Педиатрия
- •060104 –Медико-профилактическое дело
- •060105 - Стоматология
5.3. Химические свойства карбоновых кислот
Для последующего изучения биохимических реакций in vivo cучастием карбоновых кислот следует выделить следующие направления:
реакции с участием карбоксильной группы:
а)замещение атома водорода- образование солей
б) замещение гидроксигруппы- реакция нуклеофильного замещение SN, которая проходит в два этапа( 1 этап- нуклеофильное присоединение, 2 этап-элиминирование).
К этим реакциям относятся
- образование сложных эфиров
- образование тиоэфиров ( в клетках с коэнзимом А ( НSКоА - сложная органическая молекула, активирующая кислоты для их последующих биохимических превращений)
- образование амидов
2. Реакции с участием радикала ( дегидрирование, карбоксилирование ).
Обратите внимание, что все последующие реакции с участием карбоксильной группы записаны в общем виде, а студент должен уметь написать аналогичную реакцию для конкретных соединений..
2.1. Образование солей. Соли карбоновых кислот можно получить при взаимодействии с металлами( по ряду активности до Н ), оксидами металлов, гидроксидами металлов, солями более слабых кислот.
R– СООН +MgО ——>(R– СОО ) 2Mg+ Н2О
R– СООН +NаНСО3—>R– СООNа + Н2О + СО2
Правила образования названия солей: называют ацильный( кислотный) остаток + металл
НСОО Nа – формиат натрия СН3СН2СООNа – пропионат натрия
СН 3СООNа – ацетат натрия СН3СН2СН2 СООNа – бутират натрия
2.2.Получение сложных эфиров
В условиях in vitroсложные эфиры образуются несколькими путями(реакции обратимы)
а) в реакции этерификации– взаимодействие карбоновой кислоты со спиртом при нагревании в присутствии катализатора серной кислоты( реакция обратима).
R– СООН +R 1– ОН <——>R– СООR 1 + Н2О
сложный эфир
б) в реакции переэтерификации – взаимодействие сложного эфира со спиртом, образуется сложный эфир, содержащий другой остаток спирта( реакции также обратимы).
R– СООR 1 +R 2– ОН <——>R– СООR 2 +R 1– ОН
Пример : О
//
СН 3СООН + С 2Н 5ОН <——> СН3- С + Н2О
\ ОС2Н5
Этилацетат
Правила образования названий сложных эфиров:
а). называют радикал спирта + слово эфир + название кислоты – «этиловый эфир уксусной кислоты»
б) называют радикал спирта + остаток кислоты –« этилацетат»
2.3.В реакциях in vivoбольшое значение имеют реакции образования тиоэфиров и участие тиоэфиров в образовании новых эфиров путем переэтерификации.
А. Получение тиоэфиров( реакции идут с затратой энергии АТФ). Схема реакции;
а) R– СООН + НS- КоА —— АТФ ——>R– СОS- КоА
коэнзим А ацилкоэнзим А
( знак означает особый тип связи, который встречается в природных соединениях и называется «макроэргическая», т.е. высокоэнергетическая связь. Две такие связи присутствуют в молекуле АТФ ).
СН 3СООН + НS- КоА ——АТФ ——> СН3– СОS- КоА
ацетилКоА
АцетилКоА можно назвать одним из самых главных соединений, участвующих в обмене в аэробной( потребляющей для жизнедеятельности кислород) клетке
Б) этерификация в клетке in vivoосуществляется ферментами с участием активных форм карбоновых кислот: взаимодействие спирта с ацилКоА .
R– СОS- КоА +R1– ОН ——>R- СО - ОR1+ НS- КоА
сложный эфир
Так образуются сложные эфиры спирта холестерина, трехатомного спирта глицерина.( жиры, триглицериды) , нейромедиатор ацетилхолин.
+ Ацетилхолин +
СН 3– СS- КоА + НО- СН2-СН2-N( СН 3) 3 ——> СН3С - О- СН2-СН2-N( СН 3) 3
|| ||
О ацетилКоА холин О + НSКоА
2.4. Образование амидов
В условиях in vitroамиды легко образуются при взаимодействии сложного эфира с аммиаком или амином при нагревании в слабокислой среде.
R– СООR 1 +NН3—>R– СОNН 2+R 1ОН
сложный эфир амид
R– СООR 1 +R2 --NН2—>R– СОNН -R2 +R 1ОН
сложный эфир амин амид спирт
Амиды не имеют основных свойств вследствие сопряжения в группе - С(=О) –NН - ,
более того, амидная группа проявляет слабые кислотные свойства ( NH- кислотный
центр).
Реакции образования сложных эфиров, амидов в соответствии с механизмом реакции относится к S N ( формально происходит замещение группы –ОН на другую нуклеофильную группу.) В процессе реакции выделяют два этапа: вначале происходит нуклеофильное присоединении АN, а затем элиминирование воды.
Реакции углеводородного скелета
Из школьной программы студентам известна реакция радикального замещения атома водорода у α-углеродного атома( положение-2 , соседнее с карбоксильной группой) на галоген – галогенирование уксусной, пропионовой и др кислот.
СН 3 -СН2 - СООН + С12 —> СН3 -СН С1 - СООН + НС1
2-хлорпропановая кислота
В α- положении карбоновой кислоты возникает СН-кислотный центрпод влиянием акцепторной карбоксильной группы, на атомах углерода и водорода возникают заряды б+.
Н б+ Н б+
б+ | |
Н – С → СООН СН3 —С → СООН
| |
Н б+ Н б+
В реакциях in vivo α-CН- кислотный центр является местом ферментативной реакции карбоксилирования оксидом углерода( 1V). Образование малонилКоА происходит в процессе биосинтеза высших карбоновых кислот ( пальмитиновой, стеариновой ) в печени и клетках жировой ткани
Н б+ О б- СООН
б+ | | | |
Н – С → СОSКoA+ С ———> СН2– С ОSКoA
| | | активная форма малоновой кислоты
Н б+ О малонилКоА
( НООС-СН2- СОSКoA)
.