Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по теории сигналов и систем / tss19-Каротажные кабели.doc
Скачиваний:
47
Добавлен:
03.06.2015
Размер:
201.22 Кб
Скачать

19.1. Первичные электрические параметры кабелей [6, 7]

Активное сопротивление. Полное активное сопротивление линии передачи сигналов кабеля состоит из суммы сопротивлений прямого и обратного проводников. Для одножильного бронированного кабеля (ОБК) и многожильного бронированного кабеля (МБК) с однопроводной линией передачи информации (МБК-1п, броня в качестве обратного проводника) сопротивление постоянному току R0 определяется сопротивлением токопроводящей жилы (ТПЖ): длиной и конструкцией жилы, диаметром и материалом проволок жилы и температурой окружающей среды. Сопротивление обратного проводника (брони) много меньше величины сопротивления жил и его значением можно пренебречь. Для двухпроводной линии передачи (МБК-2п) полное сопротивление R0 складывается из сопротивления двух ТПЖ.

Жилы кабелей свивают, в общем случае, из нескольких стренг, каждая из которых свивается из нескольких проволок. В настоящее время распространены кабели с жилами из одной стренги. Сопротивление жилы постоянному току определяется уравнением:

R0 = (/s)(m1m2),

где:  - удельное сопротивление материала проволоки при 200С в Оммм2/км,  - длина жилы в км, s - суммарная площадь всех проволок жилы в мм, m - коэффициенты скрутки проволок в стренгу и стренг в жилу. Для новых кабелей значения коэффициентов m близки к 1. С течением времени переходное сопротивление между проволоками возрастает (окисление их поверхности) и значения коэффициентов приближаются к величине 1/cos , где углом скрутки  учитывается длина проволок в скрутках (обычно больше длины кабеля на 10-15%). Если жилы скручиваются из медных и стальных проволок, то сопротивления для них вычисляются раздельно и затем объединяются как параллельные электрические цепи. Типовые значения  для меди и стали принимаются равными соответственно 17.5 и 98 Оммм2/км.

Сопротивление жил, особенно комбинированных из стали и меди, существенно зависит от температуры. В принципе, оно может вычисляться по известному уравнению:

Rt = R20[1+(t-20)],

где  - температурный коэффициент (0.0039 для меди, 0.0062 для стали). Расчеты с учетом геотермического градиента по стволу скважины показывают, что при работе в скважинах с температурой до 1500С на забое сопротивление жил кабеля может увеличиваться на 10-20%. Отсюда следует, что нормальным явлением можно считать изменение сопротивления жил кабелей в процессе каротажа в пределах до 10%. Соответственно, этой величиной может ограничиваться и точность математической модели активного сопротивления жил кабеля.

Активное сопротивление кабелей на высоких частотах практически прямо пропорционально корню квадратному из частоты. Это определяется так называемым поверхностным эффектом - вытеснением тока к поверхности проводов, которое возрастает с увеличением частоты, и взаимодействием полей проволок кабеля. На частотах свыше 100 кГц активное сопротивление определяется, в основном, поверхностным эффектом и в несколько раз больше сопротивления постоянному току. На частотах ниже 100 кГц эта зависимость от частоты несколько уменьшается по величине, но сохраняется по характеру. Для жил каротажного кабеля зависимость активного сопротивления от частоты дополнительно осложняется влиянием скрутки проволок в стренгу (стренг в жилу) и зависит от материала проволок (медь, сталь). Строго обоснованные аналитические методы расчетов электрических параметров многопроволочных проводников каротажных кабелей отсутствуют. С использованием известных экспериментальных данных полное активное сопротивление жилы каротажного кабеля в первом приближении может быть аппроксимировано следующими формулами:

R(f) = , (19.1.1)

K(f) = , (19.1.1')

P(f) = , (19.1.1'')

где: K(f) - усредненный коэффициент поверхностного эффекта, P(f) - поправочный коэффициент для каротажного кабеля на конструкцию жилы и кабеля, r - радиус жилы в мм, s – относительные площади сечения медных и стальных проволок в жиле (sCu+sFe=1), a - частотная постоянная кабеля, значение которой порядка (0.1-0.3) для ОБК, ~(0.30.5) для МБК-1п, ~(0.50.8) для МБК-2п, и приближается к 1 для коаксиальных видеолиний.

Рис. 19.1.1. Коэффициент Q(f) кабеля с медной жилой диаметром 1.05 мм

(1- коаксиальной линии, 2- расчет по формулам аппроксимации, 3- экспериментальные данные)

На рис. 19.1.1 приведено сопоставление экспериментальных данных по значению полного коэффициента Q(f) = K(f)P(f) с расчетами по формулам (19.1.1).

Проводимость изоляции жил кабеля и электромагнитные потери.

Проводимость изоляции жил кабеля G определяется уравнением

G = (1/Rи) + Ctg(),

где значение сопротивления изоляции Rи бронированных каротажных кабелей не менее 1000 МОм/км, а параметр  потерь на поляризацию изоляции не более 0.0005. В условиях эксплуатации значение Rи обычно поддерживается не ниже 10 МОм. Эти величины определяют проводимость изоляции жил не менее 0.0003 См/км на частотах до 1 МГц и потерями в изоляции кабелей можно пренебречь.

Однако в бронированном каротажном кабеле имеют место существенные потери на перемагничивание брони и магнитных элементов окружающей среды, точное количественное значение которых предусмотреть невозможно. Влияние этих потерь на расчеты коэффициентов затухания сигнала эквивалентно потерям на поляризацию изоляции кабеля (частотно зависимая потеря энергии). Учитывая последнее, в простейшем случае можно считать возможным введение в формулу расчета проводимости дополнительного коэффициента - коэффициента приведения электромагнитных потерь к потерям в изоляции кабеля:

G = (1/Rи) + Ctg(),

где значение  для одножильных бронированных кабелей на частотах до 200 кГц порядка 0.1-0.2. Уравнение в этом случае можно считать уравнением эквивалентной проводимости кабеля, что позволяет сохранить без изменений общую теорию однородных длинных линий.

Рис. 19.1.2. Эквивалентная проводимость кабеля.

Параметр эквивалентной проводимости кабеля существенно влияет на передачу сигналов в области высоких частот. По результатам сопоставления расчетных и экспериментальных данных затухания сигнала в каротажных кабелях в диапазоне до 5 МГц может быть предложена для использования более простая формула аппроксимации эквивалентной проводимости кабеля:

G = 2fCR(f), (19.1.2)

где значение  порядка 12-14 для одножильных и 10-13 для многожильных кабелей. Пример расчета проводимости кабеля КГ 1х0.75-55-150 по данной формуле приведен на рис. 19.1.2.

Емкость токопроводящих жил определяется конструкцией кабеля и зависит от материала и толщины изоляции ТПЖ. Для одножильных кабелей емкость ТПЖ может оцениваться по уравнению (в мкФ/км): С = /(18ln(D/d)), где  - диэлектрическая проницаемость изоляции, D – внешний диаметр жилы по изоляции, d – диаметр токопроводника жилы. Значение емкости, как правило, находится в диапазоне 0.1-0.12 мкФ/км. Емкость между жилой и броней в многожильных кабелях имеет примерно такие же значения, а емкость жила-жила в 1.6-1.8 раз меньше. Зависимость емкостей жил от частоты практического значения не имеет. При повышении температуры емкость жил несколько уменьшается за счет уменьшения диэлектрической проницаемости изоляции, а при повышении давления – увеличивается. В скважинных условиях эти два процесса практически компенсируют друг друга и общее изменение емкости незначительно.

Индуктивность кабеля.

Собственная индуктивность коаксиальных линий с увеличением частоты уменьшается вследствие поверхностного эффекта в проводах. Во внешних проводах ток вытесняется к центру кабеля, во внутренних – от центра. Соответственно, индуктивность внешних проводов уменьшается, а внутренних возрастает, но их меньший диаметр не создает полной компенсации уменьшения индуктивности внешних проводов.

Общая индуктивность пары жила-броня складывается из собственной индуктивности жилы и межпроводниковой индуктивности жила-броня. В первом приближении, для пары жила-броня из разных металлов, она может определяться с помощью уравнения, которое используется для расчетов индуктивности коаксиальных кабелей (в Гн/км):

L(f) = , (19.1.3)

Lc = , Kc =100/ (19.1.4)

Lm = bln(D/d), (19.1.5)

где: f - частота тока (Гц),  - магнитные проницаемости жилы и брони (медь 1=1, сталь 2=100120),  - удельные сопротивления (1Оммм2/км, 2Оммм2/км), d – диаметр жилы (мм), D – внутренний диаметр брони кабеля, (мм), b – коэффициент учета конструкции кабеля (b  2 для ОБК, b  3 для МБК). Значение Lc/определяет собственную индуктивность жил, Lm – межпроводниковую индуктивность. Для жил, содержащих стальные проволоки в своем составе, значения1 и 1/1 вычисляются с учетом весовых коэффициентов площади сечений медных и стальных составляющих в общей площади сечения жилы.

Сопоставление расчетов индуктивности кабелей по формулам (19.1.3-19.1.5) с результатами экспериментальных измерений показало, что расчетные формулы завышают значения индуктивностей практически на всех частотах выше 100 Гц. По видимому, здесь играет роль, в первых, тот же фактор разницы значений прямого и обратного токов в жиле и броне (по существу – отсутствие локализованного обратного тока в броне), а во вторых, конструкция брони. Достаточно толстый двойной слой из стальных проволок с перекрестным повивом слоев не может быть эквивалентным оплетке коаксиального кабеля.

Сходимость расчетных и измеренных значений индуктивностей на частотах выше 200 Гц обеспечивается установлением в формуле (19.1.4) значения "эффективного" диаметра Dэ= kD кабеля вместо внутреннего диаметра брони D. Величина коэффициента k по результатам расчетных и экспериментальных значений параметров жил находится в пределах (1-1.2) для МБК-2п, (1.2-1.4) для МБК-1п и (1.4-1.6) для ОБК. В последнем случае это практически соответствует диаметру по среднему слою брони, что объяснимо по своей физической сущности. При известных значениях индуктивности жил на нескольких частотах более точная аппроксимация может производиться дополнительным изменением коэффициента Кс.

Как следует из формулы (19.1.3), зависимость индуктивности от частоты определяется собственной индуктивностью жил. Она же определяет зависимость индуктивности от температуры (изменение ). В области высоких частот индуктивность определяется, в основном, межпроводниковой индуктивностью. При намотке кабеля на лебедку его индуктивность может увеличиваться на 1-3% в зависимости от конструкции лебедки и состояния (степени окисления) поверхности брони кабеля.

Межпроводниковая индуктивность многожильных кабелей для пары жила-жила увеличивается за счет индуктивности пар и влияния соседних жил. В первом приближении она может оцениваться по формуле аппроксимации экспериментальных данных:

Lm  bln((Dэ/d)+s(2c/d), (19.1.6)

где с – расстояние между центрами жил, s  (0.4-0.5) в зависимости от конструкции кабеля и определяется по измерениям индуктивности на высоких частотах.

По измеренному значению индуктивности на частоте f1 частотная функция индуктивности может вычисляться по формуле:

L(f)  . (19.1.7)