Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Aircraft_design.pdf
Скачиваний:
692
Добавлен:
03.06.2015
Размер:
15.01 Mб
Скачать

572

Aircraft Manufacturing Considerations

reconciliation analysis: estimate versus actual (e.g., in preparing BOM)

simulation-based validation

cost estimating

production-flow analysis

human resources

17.10.3 Shop-Floor Interface

A key area where this integrated environment provides value is in the ability to define, evaluate, and document various manufacturing alternatives, such as alternate routings and resource utilization, based on evolving conditions in operations. The PPR-hub–based manufacturing database can be used to drive discrete event simulations of the alternatives to determine the impact on material flow, throughput, and utilization under various scheduling and product-mix conditions. The process plans, resource allocations, and precedence requirements in the PPR hub can be further analyzed to balance the work across the manufacturing facility and to provide proper utilization of workers. It provides an interface to feed the shop floor directly from the PPR hub database, ensuring optimal reuse of data created in the CAD/CAM and manufacturing and planning environments. One of the most significant ways to leverage a PPR-based database is to reuse the data directly as the basis for 3D work instructions on the shop floor. The immediate benefits of this approach are as follows:

Eliminate the possibility for a mismatch between shop-floor instructions and engineering data because the instructions are derived directly from the PPR hub database, including the related CAD geometry and attributes.

CAD-based work instructions provide a means to eliminate paper drawings on the shop floor because all required data, tolerance, notes, and related specifications can be embedded within the 3D dataset that also provides all required manufacturing information.

Intuitive 3D (i.e., CAD-based) work instructions, combined with authoritative engineering data and attributes, empower machinists to perform their job faster and with fewer mistakes. In such cases, the reduction in overall manufacturing flow time and cost can be dramatic.

Provide a data-feedback loop from the shop floor to the manufacturing planning environment to provide visibility on shop-floor–based changes representing asbuilt product buildup and processing.

Leverage this data-feedback loop and related PPR-hub infrastructure to reconcile and evaluate the differences among the as-designed, as-planned, and asbuilt datasets.

Finally, with respect to the in-service phase of the products’ life cycle, this architecture provides a means to also capture and manage the evolving (i.e., complex) configuration of the related BOMs and collection of processes performed during ongoing maintenance operations. As appropriate, PPR-hub data defined in one phase of the life cycle can be reused for other phases, thus providing potentially significant savings.

17.10 Digital Manufacturing Process Management

573

17.10.4 Design for Maintainability and 3D-Based Technical Publication Generation

During the evolution of a product design and manufacturing process planning, the same PPR dataset can be used to validate the maintainability of a product, as well as to develop technical-publication documents containing text, images, and movies derived directly from the 3D-based process plans. The core PPR technology supports any number of views of process-planning data related to product and resource, thereby providing a way to associatively develop maintenance plans concurrent with manufacturing planning. This ability to concurrently validate the design as well as the maintenance operations for a product is one more example of the significant leverage provided by the PPR data model. This allows the idea of leveraging the results of 3D process planning and analysis directly into Web-based technical publications for maintenance operations (e.g., analysis of 3D process plans for producibility and Web-based technical publications for maintenance). 3D enables a new business paradigm, as follows:

3D is now leveraged not only for design but also for manufacturing planning, simulation-based validation, work-instruction authoring, and delivery to the shop-floor workforce, enabling a true paperless manufacturing process. This is easily extended for 3D maintenance and repair instructions.

Operational and maintenance scenarios can be simulated using ergonomic analysis early in the design cycle to provide efficiencies later in the life cycle of a product. With a systematic methodology, a true design for customer business process can be supported.

The virtual production mock-up eliminates the requirement for prototype parts to prove out mock-ups of production tooling and fixtures, reducing cost and time.

Tooling orders can be placed much later in the development plan with the latest design revisions incorporated because they will work the first time, eliminating costly change orders to tools and parts designs.

Designs can be modified early in the design cycle to accommodate manual assembly and maintenance tasks; therefore, the requirement for special tools can be eliminated.

In the near future, the conceptual design stage of a new aircraft project must assess in detail and then incorporate the benefits that can be derived from the digital manufacturing process management.

APPENDIX A

Conversion

Linear

= 2.54 cm

Linear

= 0.3937 in

1 inch

1 cm

1 foot

= 30.48 cm

1 cm

= 0.0328 ft

1 yd

= 0.9144 m

1 m

= 1.0936 yd

1 mile

= 1.6093 km

1 km

= 0.6214 mile

1 mile

= 5,280 ft

1 ft

= 0.000189 mile

1 nm

= 1.852 km

1 km

= 0.54 nm

1 nm

= 1.1508 mile

1 mile

= 0.869 nm

Area

= 6.5416 cm2

Area

= 0.155 in2

1 in2

1 cm2

1 ft2

= 929.03 cm2

1 cm2

= 0.00108 ft2

1 ft2

= 0.092903 m2

1 m2

= 10.764 ft2

1 yd2

= 0.8361 m2

1 m2

= 1.196 yd2

1 mile2

= 2.59 km2

1 km2

= 0.3861 mile2

Volume

= 16.387 cm3

Volume

= 0.061 in3

1 in3

1 cm3

1 ft3

= 28,316.85 cm3

1 cm3

= 0.0000353 ft3

1 yd3

= 0.764555 m3

1 m3

= 1.308 yd3

1 ft3

= 28.317 L

1 L

= 0.0353 ft3

1 U.S. gallon

= 3.7854 L

1 L

= 0.2642 U.S. gallon

1 U.K. gallon

= 4.546 L

1 L

= 0.22 U.K. gallon

1 U.S. pint

= 0.0004732 m3

1 m3

= 2,113.376 U.S. pint

1 U.K. pint

= 0.0005683 m3

1 m3

= 1,759.754 U.K. pint

1 quart

= 946.353 cm3

1 cm3

= 0.001057 quart

Density

= 16.1273 g/m3

 

= 0.06242796 lb/ft3

1 lb/ft3

1 kg/m3

1 lb/ft3

= 16.0185 kg/m3

1 kg/m3

= 0.06243 lb/ft3

Speed

= 1.0973 km/hr

Speed

= 0.9113 ft/s

1 ft/s

1 km/hr

1 ft/min

= 0.00508 m/s

1 m/s

= 196.85 ft/min

1 mph

= 0.447 m/s

1 m/s

= 2.237 mph

1 mph

= 0.869 knots

1 knot

= 1.151 mph

1 knot

= 0.51444 m/s

1 m/s

= 1.944 knot

1 knot

= 1.853 km/hr

 

 

Angle

= 0.01716 radian

Angle

= 57.296 deg

1 deg

1 radian

575

576

Appendix A

Density

= 27.68 g/cm3

Density

= 0.03613 lb/in3

1 lb/in3

1 g/cm3

1 lb/ft3

= 16.0185 kg/m3

1 kg/m3

= 0.06243 lb/ft3

Mass

= 0.454 kg

Mass

= 2.2046 lb

1 lb

1 kg

Force

= 4.4482 N

Force

= 0.2248 lb

1 lb

1 N

1 lb

= 0.454 kg

1 kg

= 2.2046 lb

1 oz

= 28.35 gm

1 gm

= 0.3527 oz

1 oz

= 0.278 N

1 N

= 3.397 oz

Pressure

= 6,894.76 pascal

Pressure

= 0.000145 lb/in

1 lb/in2

1 pascal

1 lb/ft2

= 44.88 pascal

1 pascal

= 0.02089 lb/ft2

1 lb/in2

= 703.07 kg/m2

1 kg/m2

= 0.0001422 lb/in2

1 lb/ft2

= 4.8824 kg/m2

1 kg/m2

= 0.020482 lb/ft2

1 atm

= 1,013.25 milibar

1 milibar

= 0.000987 atm

1 bar

= 14.5 lb/in2

1 atm

= 14.7 lb/in2

Energy

= 1.356 joule

Energy

= 0.7376 lb/ft

1 lb/ft

1 joule

1 watt-hr

= 3,600 joule

1 joule

= 0.000278 watt-hr

1 lb/ft

= 1.356 joule

1 joule

= 0.7376 lb/ft

1 watt-hr

= 0.00134 hp-hr

1 hp-hr

= 745.7 watt-hr

Power

= 0.7457 kw

Power

= 1.341022 hp

1 hp (550 ft lbf)

1 kw

Fuel properties

 

 

 

AVGAS

= 5.75 lb

 

 

1 U.S. gallon

 

 

1 ft3

= 43 lb

 

 

AVTUR

= 6.56 lb

 

 

1 U.S. gallon (JP4)

 

 

1 ft3

= 48.6 lb

 

 

AVTUR

= 7.1 lb

 

 

1 U.S. gallon (JP5)

 

 

1 ft3

= 53 lb

 

 

APPENDIX B

International Standard Atmosphere (Table below from hydrostatic equations)

Altitude

Pressure

Temperature

Density

Viscosity

Sound speed

 

ft

lb/ft2

R

lb/ft3

107 lbsec/ft2

ft/s

Cf turbulent

0

2116.22

518.67

0.00237

3.7372

1116.5

0.01449

1000

2040.85

515.1

0.0023

3.7172

1112.6

0.01459

2000

1967.68

511.54

0.00224

3.6971

1108.75

0.0147

3000

1896.64

507.97

0.00217

3.677

1104.88

0.0148

4000

1827.69

504.41

0.00211

3.657

1100.99

0.01491

5000

1760.79

500.84

0.00294

3.637

1097.09

0.1502

6000

1695.89

497.27

0.00198

3.616

1093.178

0.01513

7000

1632.93

493.71

0.00192

3.596

1089.25

0.01525

8000

1571.88

490.14

0.00186

3.575

1085.31

0.01536

9000

1512.7

486.57

0.00181

3.555

1081.35

0.01548

10000

1455.33

483.01

0.00175

3.534

1077.38

0.0156

11000

1399.73

479.44

0.0017

3.513

1073.4

0.01572

12000

1345.87

475.88

0.00164

3.4927

1069.4

0.01585

13000

1293.7

472.31

0.00159

3.4719

1065.39

0.01597

14000

1243.18

468.74

0.00154

3.451

1061.36

0.0161

15000

1194.27

465.18

0.00149

3.43

1057.31

0.01623

16000

1146.92

461.11

0.00144

3.4089

1053.25

0.01637

17000

1101.11

458.05

0.0014

3.388

1049.17

0.0165

18000

1056.8

454.48

0.00135

3.3666

1045.08

0.01664

19000

1013.93

450.91

0.0013

3.3453

1040.97

0.01678

20000

1036.85

447.35

0.00126

3.324

1036.95

0.01693

21000

932.433

443.78

0.00122

3.3025

1032.71

0.01707

22000

893.72

440.21

0.00118

3.281

1028.55

0.01722

23000

856.32

436.65

0.00114

3.26

1024.38

0.01738

24000

820.19

433.08

0.0011

3.238

1020.18

0.01753

25000

785.31

429.52

0.00106

3.216

1015.98

0.01769

26000

751.64

425.95

0.00102

3.1941

1011.75

0.01785

27000

719.15

422.38

0.00099

3.1722

1007.5

0.01802

28000

687.81

418.82

0.00095

3.1502

1003.24

0.01819

29000

657.58

415.25

0.00092

3.128

998.96

0.01836

30000

628.43

411.69

0.00088

3.1059

994.66

0.01854

31000

600.35

408.12

0.00085

3.0837

990.35

0.01872

32000

573.28

404.55

0.00082

3.0614

986.01

0.0189

33000

547.21

400.97

0.00079

3.0389

981.65

0.01909

34000

522.12

397.42

0.00076

3.0164

977.28

0.0193

35000

497.96

393.85

0.00073

2.9938

972.88

0.01948

36089

472.68

389.97

0.0007

2.969

968.08

0.0197

37000

452.43

389.97

0.00067

2.969

968.08

0.01999

38000

431.2

389.97

0.00064

2.969

968.08

0.02032

39000

410.97

389.97

0.00061

2.969

968.08

0.02065

40000

391.68

389.97

0.00058

2.969

968.08

0.02099

577

578

Appendix B

41000

373.3

389.97

0.00055

2.969

968.08

0.02134

42000

355.78

389.97

0.00053

2.969

968.08

0.02169

43000

339.09

389.97

0.0005

2.969

968.08

0.02205

44000

323.08

389.97

0.00048

2.969

968.08

0.02243

45000

308.01

389.97

0.00046

2.969

968.08

0.02281

46000

299.56

389.97

0.00043

2.969

968.08

0.0232

47000

279.78

389.97

0.00041

2.969

968.08

0.02359

48000

266.65

389.97

0.00039

2.969

968.08

0.024

49000

254.14

389.97

0.00037

2.969

968.08

0.02442

50000

242.21

389.97

0.00036

2.969

968.08

0.02485

55000

190.47

389.97

0.00028

2.969

968.08

0.02716

60000

149.78

389.97

0.00022

2.969

968.08

0.02977

65000

117.79

389.97

0.00017

2.969

968.08

0.03275

70000

92.684

392.37

0.00013

2.984

971.06

0.03632

75000

73.053

395.12

0.00010

3.002

974.44

0.04045

80000

57.675

397.86

0.00008

3.019

977.82

0.04523

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Altitude

Pressure

Temperature

Density

Viscosity

Sound speed

 

m

N/m2

K

kg/m3

Nsec/m2

m/s

Cf turbulent

0

101327

288.15

1.225

0.00001789

340.3

0.00263

500

95463

284.9

1.16727

0.00001773

338.37

0.00264

1000

89876.7

281.65

1.11164

0.00001757

336.44

0.00266

1500

84558

278.4

1.05807

0.00001741

334.49

0.00267

2000

79497.2

275.15

1.00649

0.00001725

332.53

0.00269

2500

74684.4

271.9

0.95686

0.00001709

330.56

0.00271

3000

70110.4

268.65

0.90912

0.0001693

328.58

0.00273

3500

65765.8

265.4

0.86323

0.00001677

326.59

0.00274

4000

61641.9

262.15

0.81913

0.00001661

324.58

0.00276

4500

57729.9

258.9

0.77678

0.00001644

322.56

0.00278

5000

54021.5

255.65

0.73612

0.00001628

320.53

0.0028

5500

50508.3

252.4

0.69711

0.00001611

318.49

0.00282

6000

47182.5

249.15

0.6597

0.00001594

316.43

0.00284

6500

44036.2

245.9

0.62385

0.00001577

314.36

0.00286

7000

41062.1

242.65

0.5895

0.0000156

312.28

0.00288

7500

38252.7

239.4

0.55663

0.00001543

310.18

0.0029

8000

35601

236.15

0.52517

0.00001526

308.07

0.00292

8500

33100.2

232.9

0.49509

0.00001509

305.94

0.00294

9000

30743.6

229.65

0.46635

0.00001492

303.8

0.00297

9500

28524.7

226.4

0.4389

0.00001474

301.64

0.00299

10000

26437.3

223.15

0.41271

0.00001457

299.47

0.00301

10500

24475.3

219.9

0.38773

0.00001439

297.28

0.00304

11000

22633

216.65

0.36392

0.00001421

295.07

0.00306

11500

20916.8

216.65

0.33633

0.00001421

295.07

0.0031

12000

19331

216.65

0.31983

0.00001421

295.07

0.00314

12500

17865

216.65

0.28726

0.00001421

295.07

0.00318

13000

16511

216.65

0.26548

0.00001421

295.07

0.00323

13500

15259.2

216.65

0.24536

0.00001421

295.07

0.00327

14000

14102.3

216.65

0.22675

0.00001421

295.07

0.00331

14500

13033.2

216.65

0.20956

0.00001421

295.07

0.00336

15000

12045.1

216.65

0.19367

0.00001421

295.07

0.0034

16000

10287.9

216.65

0.16542

0.00001421

295.07

0.00366

17000

8787.12

216.65

0.14129

0.00001421

295.07

0.00387

18000

7505.24

216.65

0.12068

0.00001421

295.07

0.00398

19000

6410.36

216.65

0.10307

0.00001421

295.07

0.00409

20000

5475.21

216.65

0.08803

0.00001421

295.07

0.00421

25000

2511.18

221.65

0.03946

0.00001448

298.46

0.00492

 

 

 

 

 

 

 

APPENDIX C

Aerofoils

Appendix C on aerofoils is found on the Web at www.cambridge.org/Kundu

579

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]