
- •1. Предмет и задачи микробиологии. Разделы микробиологии. Основные перспективные направления науки.
- •2. История развития микробиологии. Основные открытия. Достижения русских ученых в развитии микробиологии. Развитие современной науки.
- •3. Распространение микроорганизмов в природе. Участие в производственных процессах.
- •4. Неклеточные формы жизни. Морфология и размножение вирусов. Отличительные черты прионов.
- •10. Морфология бактерий. Разнообразие форм. Размеры микроорганизмов. Методы изучения морфологии бактерий. Виды микроскопов.
- •11. Морфология бактерий. Химический состав бактериальной клетки.
- •12. Морфология бактерий. Строение и химический состав внешних слоев. Капсула, слизистые слои, чехлы.
- •13. Морфология бактерий. Клеточная стенка грамположительных и грамотрицательных бактерий. Окраска по Граму.
- •14. Морфология бактерий. Явление l-трансформации. Биологическая роль.
- •15. Морфология бактерий. Бактериальная мембрана. Строение мезосом, рибосом. Химический состав цитоплазмы.
- •16. Морфология бактерий. Запасные включения бактериальной клетки.
- •17. Движение бактерий. Строение жгутика, толщина, длина, химический состав. Приготовление фиксированных препара-тов и препаратов живых клеток микроорганизмов.
- •18. Движение бактерий. Виды расположения жгутиков. Функции фимбрий и пилей.
- •19. Движение бактерий. Характер движения бактериальной клетки. Виды таксисов.
- •20. Бактериальное ядро. Строение, состав. Характеристика днк.
- •22. Бактериальное ядро. Виды деления бактериальной клетки. Процесс деления.
- •23. Бактериальное ядро. Формы обмена генетической информацией у бактерий. Изменчивость бактерий.
- •31. Влияние физических факторов на микроорганизмы. Отношение микроорганизмов к молекулярному кислороду. Аэробы, анаэробы, микроаэрофилы.
- •38. Влияние химических факторов на микроорганизмы. Антисептики, виды и воздействие на микроорганизмы.
- •39. Влияние биологических факторов на микроорганизмы. Антибиоз. Виды взаимоотношений – антагонизм, паразитизм, бактериофаги.
- •40. Влияние биологических факторов на микроорганизмы. Взаимоотношения бактерий с другими организмами. Симбиоз. Виды и примеры симбиоза.
- •44. Питание микроорганизмов. Типы питания. Источники энергии и углерода. Автотрофность. Гетеротрофность. Виды автотрофов.
- •45. Питание микроорганизмов. Гетеротрофные микроорганизмы. Различная степень гетеротрофности.
- •46. Питание микроорганизмов. Источники азота. Характеристика процесса азотфиксации. Механизм диазотрофии.
- •47. Питание микроорганизмов. Источники азота. Характеристика процессов нитрификации, денитрификации.
- •48. Питание микроорганизмов. Источники азота. Характеристика процесса аммонификации. Возбудители гниения белковых веществ.
- •49. Питание микроорганизмов. Источники серы. Восстановление и окисление серы и серосодержащих веществ. Сульфатредукция.
- •53. Метаболизм бактерий. Хемосинтез. Происхождение кислородного дыхания. Токсический эффект воздействия кислорода.
- •54. Метаболизм бактерий. Хемосинтез. Дыхательный аппарат клетки. Метаболизм бактерий. Хемосинтез. Энергетический обмен микроорганизмов.
- •57. Биосинтетические процессы. Образование вторичных метаболитов. Виды антибиотиков. Механизм действия.
- •72. Основы экологии микроорганизмов. Симбионты организма человека. Пищеварительный тракт. Проблема дисбактериоза.
- •75. Инфекция. Патогенные микроорганизмы. Их свойства. Вирулентность микроорганизмов.
- •76. Инфекция. Инфекционный процесс. Виды инфекций. Формы инфекций. Локализация возбудителя. Входные ворота.
- •77. Инфекция. Эпидемический процесс. Источники и пути передачи. Распространение инфекции.
- •79. Инфекция. Роль макроорганизма в развитии инфекционного процесса.
- •81. Классификация инфекций. Особо опасные инфекции. Кишечные инфекции, аэрогенные инфекции, детские инфекции.
- •82. Пищевые отравления и токсикоинфекции. Причины возникновения. Основные клинические симптомы.
- •83. Пищевые токсикоинфекции. Возбудитель – бактерии рода Salmonella.
- •84. Пищевые токсикоинфекции. Возбудитель – бактерии рода Escherichium и Shigella.
- •85. Пищевые токсикоинфекции. Возбудитель – бактерии рода Proteus.
- •86. Пищевые токсикоинфекции. Возбудитель – бактерии рода Vibrio.
- •87. Пищевые токсикоинфекции. Возбудитель – бактерии рода Bacillus и Clostridium.
- •88. Пищевые токсикоинфекции. Возбудитель – бактерии рода Enterococcus и Streptococcus.
- •89. Пищевые токсикозы. Возбудитель – бактерии рода Clostridium.
- •90. Пищевые токсикозы. Возбудитель – бактерии рода Staphylococcus.
49. Питание микроорганизмов. Источники серы. Восстановление и окисление серы и серосодержащих веществ. Сульфатредукция.
В природе сера находится в виде неорганических солей, главным образом сульфатов, в виде молекулярной элементарной серы и в составе органических веществ (аминокислот, витаминов, кофакторов). Процессы, в которых бактерии включают серу и ее соединения в свой метаболизм можно разделить на окисление элементарной серы и ее восстановленных соединений и сульфатредукцию.
#Окисление восстановленных соединений серы
Способностью получать энергию в результате окисления восстановленных соединений серы обладают грамотрицательные бактерии с полярно расположенными жгутиками, объединяемые в роды Thiobacillus и Thiomicrospira, а также неподвижные термофильные бактерии рода Sulfolobus.
Большинство тиобацилл может окислять различные соединения серы, образуя в качестве конечного продукта сульфат:
S2- + 2О2 = SО42-
S + Н2О + 1,5O2 = SО42- + 2Н +
S2O32- + Н2О + 2О2 = 2SО42- + 2Н +
Многие тиобациллы облигатные хемолитоавтотрофы, фиксирующие СО2.
Другие (Т. novellas, Т. intermedius) способны также использовать в качестве источников энергии и углерода органические соединения. Т. thiooxidans образует большие количества серной кислоты и хорошо переносит низкие значения рН среды.
# Декарбоксилирование серосодержащих аминокислот
В результате декарбоксилирования серосодержащих аминокислот образуются меркаптаны, метиламин, серводород, метан.
* Диссимиляционная сульфатредукция – анаэробный процесс восстановления сульфатов до сероводорода («сульфатное дыхание»). Главным продуктом реакции является сероводород:
8[H] + SO4 2- = H2S + 2H2O + 2OH-
К сульфатредукторам относят бактерии 7 группы по классификатору Берджи родов, имеющих приставку Desulfo-.
Бактерии-сульфатредукторы разнообразны:
роды Desulfotomaculum и Desulfobacter представлены палочковидными бактериями
род Desulfovibrio – изогнутыми бактериями
род Desulfogigas – спириллами
роды Desulfococcus и Desulfosarcina – кокками
род Desulfonema – нитчатыми формами.
По степени усвоения органических кислот различают две группы сульфатредуцирующих бактерий:
Бактерии, относящиеся к первой группе, окисляют донор водорода не полностью и выделяют уксусную кислоту. Таковы виды спорообразующего рода Desulfotоmaculum и неспорообразующего рода Desulfovibrio.
Вторая группа включает роды и виды, часть которых может расти, используя спирты, ацетат, высшие жирные кислоты или бензоат, а другие способны даже к хемоавтотрофному росту в присутствии водорода и формиата. К этой группе относятся спорообразователи (Desulfotomaculum acetoxidans), а также неспорообразующие палочки (Desulfobacter), кокки (Desulfococcus), сарцины (Desulfosarcinа), нитевидные формы, передвигающиеся путем скольжения (Desulfonema),и некоторые другие бактерии.
*Ассимиляционная сульфатредуция. Почти все бактерии, грибы и зеленые растения способны использовать в качестве источника серы сульфат. Они получают сульфид, необходимый для синтеза серосодержащих аминокислот, путем ассимиляционной сульфатредукции.
Первая реакция на этом пути является общей как для диссимиляционного, так и для ассимиляционного восстановления сульфата.
Далее при диссимиляционной сульфатредукции происходит прямое восстановление активированного сульфата, а при ассимиляционной следует еще одна реакция активации, на которую непосредственно затрачивается энергия АТФ; с помощью АТФ-сульфурилазы (сульфатаденилтрансферазы) дифосфатный остаток АТФ обменивается на сульфат:
АТФ + SO42- = Аденозин-5`-фосфосульфат + PPi
Дифосфат (пирофосфат) расщепляется пирофосфатазой.
Продуктом активации является аденозин-5-фосфосульфат.
На пути ассимиляционного восстановления сульфата АФС с помощью АФС-киназы и АТФ фосфорилируется у ряда организмов с образованием фосфоаденозинфосфосульфата (ФАФС); лишь этот вдвойне активированный сульфат восстанавливается сначала до сульфита, а затем до сульфида.