Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Estestvoznanie.pdf
Скачиваний:
80
Добавлен:
31.05.2015
Размер:
2.38 Mб
Скачать

ГЛАВА 3. ОСНОВНЫЕ ПРЕДСТАВЛЕНИЯ КВАНТОВОЙ ФИЗИКИ

3.1. Корпускулярно-волновой дуализм

Напомним, что на природу света в истории науки существовали две точки зрения. Одна из них, поддерживаемая авторитетом Ньютона, рассматривала свет как поток упругих корпускул. Вторая точка зрения, отстаиваемая Декартом, а впоследствии Гюйгенсом, рассматривала свет как механическую волну, распространяющуюся в упругой среде – эфире. До начала XIX века господство одерживала первая точка зрения. Однако с 1801 года ситуация резко изменилась в связи с установлением Т. Юнгом явления интерференции на двух щелях. Опыты Юнга были продолжены Френелем, который дал объяснение явлениям интерференции и дифракции исходя из представлений о волновой природе света. Таким образом, к середине XIX века не было никаких сомнений по поводу того, что свет является волной.

Отметим, что классическая физика исходит из коренного различия между понятиями частицы и волны. Считается, что частица обладает конечным числом степеней свободы, строгой траекторией движения, отсутствием интерференции и дифракции. Волна же обладает бесконечным числом степеней свободы, бестраекторностью, ибо каждая точка пространства, куда приходит возбуждение, сама становится источником вторичных волн.

Опираясь на представление Планка о квантах, Эйнштейн еще в 1905 году сумел обосновать природу фотоэффекта исходя из корпускулярных представлениях. Каждый электрон выбивается из металла под действием отдельного светового кванта, или фотона, который при этом теряет свою энергию. Часть этой энергии уходит на разрыв связи электрона с металлом. Эйнштейн показал зависимость энергии электрона от частоты светового кванта и энергии связи электрона с металлом.

Также существование светового давления (русский физик П.Н. Лебедев доказал в 1899 году существование светового давления) объяснялись корпускулярной теорией.

Казалось, что корпускулярная теория материи торжествует. Но вскоре выяснилось, что определить энергию фотона (частицы света, не обладающей массой покоя) можно было, только представляя его себе в виде волны с соответствующей длиной и частотой. Получалось, что фотон – это одновременно и волна и частица. Распространяется он как волна, излучается и поглощается

– как частица.

80

Энергия, масса и импульс фотона: Фотон обладает энергией Е = hv.

Согласно теории относительности частица с энергией Е обладает массой т = Е/с2. Фотон – частица, движущаяся со скоростью света с. При движении фотона его масса, как видно из приведенных формул, конечна. Однако подстановка в формулы специальной теории относительности значения скорости движущегося объекта V = С приведет к равенству нулю массы покоя фотона. То есть фотон существенно отличается от обычных известных к тому времени в физике частиц, так как не имеет массы покоя и может существовать только в движении. Из равенства вышеприведенных формул получим:

hv = mc2.

(3.1)

Импульс фотона Р = тс и, учитывая, что λ = vс = h/P,

 

P = hv/c = h/λ,

(3.2)

где λ – длина волны.

 

3.2.Гипотеза де Бройля. Волновые свойства вещества

В1924 году Луи де Бройль распространил идею о двойственной корпус- кулярно-волновой природе света на все материальные объекты, введя представление о волнах, названных волнами де Бройля. Все частицы, обладающие конечным импульсом Р, обладают волновыми свойствами, и их движение сопровождается некоторым волновым процессом. Де Бройль исходя из общих принципов теории относительности получил закон, устанавливающий зависимость длины волны, связанной с движущейся частицей, от импульса частицы:

λ=h/P,

где h — постоянная Планка.

Вид зависимости полностью совпал с соотношением для фотона и связанной с ним световой волной. Однако возникает вопрос, если с какой-либо движущейся частицей, скажем, с движущимся электроном, связана волна, то должны проявляться эффекты, определяемые волновыми свойствами электрона, например, дифракция электронов? Было установлено, что электроны дифрагируют на кристаллах как волны, и длина этих волн полностью соответствует формуле де Бройля. Позже были проведены эксперименты; устанавливающие дифракцию других элементарных частиц и даже атомов. Итак,

81

сомнений в волново-корпускулярном дуализме частиц нет, но есть ли понимание этого явления?

Экспериментально подтвержденная гипотеза де Бройля превратилась в принципиальную основу квантовой механики. У объектов микромира, рассматриваемых с ее позиций, обнаружились такие свойства, которые совершенно не имеют аналогий в привычном нам мире. Прежде всего — это кор- пускулярно-волновая двойственность, или дуализм элементарных частиц (это и корпускулы и волны одновременно, а точнее — диалектическое единство свойств тех и других). Движение микрочастиц в пространстве и времени нельзя отождествлять с механическим движением макрообъекта. Например, положение элементарной частицы в пространстве в каждый момент времени не может быть определено с помощью системы координат, как для привычных нам тел окружающего мира. Движение микрочастиц подчиняется законам квантовой механики.

3.3. Принцип неопределенности Гейзенберга

Об абсолютной непригодности законов классической механики в микромире свидетельствует установленное видным немецким физиком Вернером Гейзенбергом (1901-1976) соотношение неопределенностей: если известно место положения частицы в пространстве, то остается неизвестным импульс (количество движения), и наоборот. Можно говорить лишь о вероятности того, где в данный момент времени находится частица, и это является неизбежным следствием введения в физическую теорию представлений о квантовых скачках. Это одно из фундаментальных положений квантовой механики. С точки зрения классической механики и просто «здравого смысла» принцип неопределенности представляется абсурдным.

Исходя из созданного им математического аппарата квантовой механики, Вернер Гейзенберг установил предельную точность, с которой можно одновременно определить координату и импульс микрочастицы, и получил следующее соотношение неопределенностей этих значений:

Х × Р ≥ h,

(3.3)

где Х— неопределенность в значении координаты; Р — неопределенность в значении импульса.

Произведение неопределенности в значении координаты и неопределенности в значении импульса не меньше, чем величина порядка по-

82

стоянной

Планка

h. Чем точнее определена одна величина, скажем,

X (∆Х

→ 0),

тем больше становится неопределенность другой:

∆Р → ∞. Если же точно определен импульс частицы Р (∆Р → 0), то неопределенность координаты стремится к бесконечности (∆Х → ∞).

Итак, соотношение неопределенности накладывает определенные ограничения на возможность описания движения частицы по некоторой траектории: понятие траектории для микрообъектов теряет смысл.

Соотношение неопределенности Гейзенберга ставило принципиальный запрет на возможность точного описания мира, что являлось краеугольным камнем механистической науки классического периода, выражавшимся в фи-

лософии Лапласовского детерминизма (если мы знаем исходные данные, то можем абсолютно точно рассчитать будущее). Если в классической физике понятие случайности используется для описания поведения систем с большим количеством однотипных элементов и является лишь сознательной жертвой полноте описания во имя упрощения решения задачи, то в кванто-

вой физике признается, что в микромире точный прогноз поведения объектов, по-видимому, вообще невозможен. Похоже на то, что сама природа не знает точного ответа на некоторые вопросы.

Кроме того, в квантовой механике принципиально отличается от классического закон сложения вероятностей взаимоисключающих друг друга (с классической точки зрения) событий (например, прохождение электрона через одну из щелей). В классической концепции вероятности всегда складываются, что и приводит к ожиданию обнаружить при открывании двух щелей картину, равную сумме изображений, получаемых от каждой из щелей в отдельности. В квантовой механике этот закон справедлив не всегда. Если же ситуация такова, что события принципиально неразличимы, суммарная вероятность вычисляется как квадрат модуля суммы комплексных функций, называемых амплитудами вероятностей. При этом вероятности не суммируются.

При движении в пустом пространстве амплитуда перехода частицы из одной точки в другую совпадает с выражением для плоской монохроматической волны. В случае больших масс, составляющих систему тел, ограничения на точность измерений стремятся к нулю, и законы квантовой механики переходят в законы классической физики. Поэтому если комната имеет две двери, то выходящий из одной двери человек, в принципе, «будет интерферировать» подобно электрону в опыте со щелями, из-за чего в пространстве возникнет несколько областей, где он сможет появиться. Однако из-за боль-

83

шой массы человека вероятности нахождения человека в других областях, кроме одной, будут стремиться к нулю. Поэтому мы и не наблюдаем своих двойников.

Фейман для понимания принципа неопределенности предложил следующий эксперимент:

Случай 1. Пусть имеется источник с пулями, перед которым установлен броневой щит с одним отверстием, пропускающим пули. На большом расстоянии от первого щита поставим второй, уже с двумя отверстиями. Достаточно далеко от второго щита будет установлен третий щит, в котором пули, прошедшие через отверстия, будут застревать — так, что их можно будет сосчитать. Сразу можно обратить внимание на то, что пули представляют собой дискретные порции энергии. Предположим, что вся энергия движения пули полностью переходит во внутреннюю энергию мишени. Ясно, что энергия мишени при попадании в нее пули увеличивается скачком на величину энергии одной пули, то есть дискретными порциями. Каждая пуля — одна нерасчленяемая и опознаваемая порция, поэтому если в качестве мишени использовать ящики с песком, расположенные вдоль поверхности последнего щита, то одна пуля может попасть только в один из ящиков. Если второе отверстие закрыть броневой завесой, то пули могут достичь мишени только через первое отверстие. При этом большая часть пролетевших пуль будет попадать в ящик с песком, находящимся прямо напротив этой щели. Число прошедших пуль за определенную единицу времени легко сосчитать. Скажем, это будет значение N1. Теперь закроем первое отверстие, получим число пуль N2, прошедших через второе отверстие. Если будут открыты оба отверстия, то окажется, что число прошедших через обе щели пуль N12 представляет собой простую сумму N1 и N2. Этот факт не является для нас поразительным, именно это мы и ожидали получить. Учитывая, что пули — это дискретные порции веществ, — частицы, а не волны, «отсутствие интерференции» в опыте находится в полном соответствии с нашим обыденным опытом.

Случай 2. Здесь через отверстия будут пропускаться волны, например, морские. Броневые щиты заменяют на дамбу с двумя проходами для воды. Оказывается в случае, если оба прохода будут открыты сразу, наблюдается явление интерференции — явление перераспределения гребней и впадин в пространстве за дамбой вследствие наложения волн, проходящих через первый проход и через второй проход, друг на друга. Интенсивность суммарной волны уже не будет равна сумме интенсивностей волн, проходящих через первый проход (при закрытом втором проход) и через второй проход (при закрытом первом проходе).

Положение максимумов интенсивностей, то есть гребни результирующей волны за дамбой, может быть достаточно легко рассчитано. Но что интересно: вовсе не обязательно, что они будут располагаться прямо напротив проходов.

Различие между корпускулами и волнами очевидно.

Случай 3. Теперь поэкспериментируем с электронами. Пусть у нас имеется источник с электронами, экран с двумя отверстиями и детектор, стоящий за экраном и способный регистрировать заряд, приносимый электроном. При попадании электронов в детектор происходит щелчок. Мы легко установим по щелчкам, что электроны попадают в детек-

84

тор дискретно, строго по одному, порциями. Следовательно, можно поступать так же, как и в случае с пулями: можно измерять вероятность появления электронов в каждой точке экрана. Экспериментально установлено, что если оба отверстия будут открыты, то мы получим кривую вероятности попадания, соответствующую кривой, полученной в опыте с интерференцией волн. Если поочередно закрывать то одно отверстие, то другое, а при этом снимать кривые вероятности попадания одной дискретной порции в детектор, то мы получим значения N1 и N2, но вероятность попадания при условии, когда открыты оба отверстия, уже не равна их сумме (рис. 3.1).

Электроны попадают в детектор дискретными порциями, как если бы это были частицы, но вероятности попадания этих частиц определяются по тем же законам, по которым определяется интенсивность волнения воды.

Рис. 3.1. Распределения электронов в эксперименте Феймана

Теперь обратим внимание на следующее важное обстоятельство: когда были открыты оба отверстия, вследствие чего была получена интерференционная картина, мы не следили за тем, через какое из двух отверстий в данный момент пролетает электрон.

Изменим экспериментальную ситуацию таким образом, чтобы можно было следить за этим. Поэтому за отверстиями помещают мощный источник света: электроны рассеивают свет, и по вспышке за отверстием 1 или 2 можно точно установить, через какое из них пролетел электрон. При такой постановке эксперимента мы получаем совершенно другой результат: интерференционная картина разрушается, и поведение электронов совпадает с поведением пуль в первом рассмотренном нами случае, так что N12 = N1 + N2. И какие бы усовершенствования в постановке экспериментов ни были бы предложены, каждый раз оказывается, что невозможно, с одной стороны, сказать, через какое отверстие пролетает наш электрон, то есть точно определить его координату, а с другой стороны — не исказить картины распределения регистрируемых электронов, не нарушить ха-

рактера интерференции. По интерференционной картине всегда можно определить длину волны электронов, а затем по формуле де Бройля импульс электрона. Но в этом случае оказывается, что мы знаем импульс электрона, но не знаем его координату, так как не определяли, через какое отверстие прошел электрон. И наоборот, если мы знаем координату электрона, то ничего не можем сказать об импульсе вследствие разрушения интерференционной картины. В разных экспериментальных ситуациях электрон ведет себя поразному: в одних — как частица, а в других — как волна. Этот совершенно неожиданный,

85

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]