Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Davis W.A.Radio frequency circuit design.2001

.pdf
Скачиваний:
94
Добавлен:
23.08.2013
Размер:
2.47 Mб
Скачать

Radio Frequency Circuit Design. W. Alan Davis, Krishna Agarwal

Copyright 2001 John Wiley & Sons, Inc.

Print ISBN 0-471-35052-4 Electronic ISBN 0-471-20068-9

APPENDIX C

Double-Tuned Matching Circuit

Example

Assume that an impedance transformation is required between a 50 source and a 15 load. The matching is to be done using the double-tuned matching circuit described in Chapter 3 for the program DBLTUNE. The center frequency is at 4 MHz, the bandwidth is 100 kHz, and the pass band ripple is 0.5 dB. The capacitances and transformer parameters are to be determined. In the following computer output, the bold characters are the responses the program expects from the user. Furthermore, in this example, the verbose mode is chosen by choosing to display the intermediate results. An analysis of this circuit using SPICE is shown in Fig. C.1.

Display intermediate results? < Y/N > Y Center Freq, Bandwidth (Hz) = ? 4.E6, 100.E3 Fm1 = 0.396480E+07 Fm2 = 0.403551E+07

GTMIN = 0.99992E+00

Passband ripple in dB = ? 0.5 Resistance Ratio r = 0.19841E+01

Q2 m1 = 0.97432E+00 Q2 m2 = 0.10097E+01

Generator and Load resistances values = 50., 15. L2’ = 0.56259E+02 H C2’ = 0.28140E+02pF

RL’ = 0.79332E+05 Bm1 = 0.19480E-01 Bm2 = -0.20193E-01 Given terminal resistances: RG = 0.500E+02 RL

= 0.150E+02

Input Circuit: C1 = 0.446554E+05pF L11 = 0.354637E-01 H Output Circuit: C2 = 0.148828E+06pF L22

= 0.106441E-01 H

Transformer coupling coefficient k = 0.250991E-01

290

DOUBLE-TUNED MATCHING CIRCUIT EXAMPLE

291

Insertion Loss, dB

0.00

 

 

 

 

 

 

 

 

–5.00

 

 

 

 

 

 

 

 

–10.00

 

 

 

 

 

 

 

 

–15.00

 

 

Double-Tuned Parallel Matching

 

 

 

–20.00

 

 

 

 

 

C1 = 44.66 nF

 

Design Bandwidth = 100 kHz

 

 

L11 = 35.46 nH

 

 

 

 

 

 

Actual Bandwidth = 139.2 kHz

 

 

C2 = 148.8 nF

 

–25.00

Rg = 50 Ω

 

 

 

 

L22 = 148.8 nF

 

 

RL = 15 Ω

 

 

 

 

k = 0.0251

 

–30.00

 

 

 

 

 

 

 

 

3.8

3.8

3.9

4.0

4.0

4.1

4.1

4.2

4.2

Frequency, MHz

FIGURE C.1 Double-tuned matching circuit example.

Radio Frequency Circuit Design. W. Alan Davis, Krishna Agarwal

Copyright 2001 John Wiley & Sons, Inc.

Print ISBN 0-471-35052-4 Electronic ISBN 0-471-20068-9

APPENDIX D

Two-Port Parameter Conversion

D.1 TWO-PORT VOLTAGE AND WAVE PARAMETERS

Conversion between the z, y, h, and g two-port voltage-current parameters is simply rearrangement of two linear equations relating voltages and currents at the two ports. Converting between these and the S parameters requires relating the voltage waves to voltages and currents. This latter relationship always includes the characteristic impedance, Z0, by which the S parameters are defined. Typically this value is 50 . Table D.1 shows this conversion. The program PARCONV is basically a code of many of the conversions in Table D.1.

The definitions of the various two-port parameters are described below. In each case it is assumed that the current is flowing into the port terminal.

v1

D

z11

z12

 

i1

D.1

v2

z21

z22

 

i2

i1

D

y11

y12

 

v1

D.2

i2

y21

y22

 

v2

v1

D

h11

h12

 

i1

D.3

i2

h21

h22

 

v2

i1

D

g11

g12

 

v1

D.4

v2

g21

g22

 

i2

v1

D

A

B

v2

D.5

i1

C

D

 

i2

 

 

 

 

 

 

b1

D

S11

S12

 

a1

D.6

b2

S21

S22

 

a2

292

293

TABLE D.1 S-Parameter Conversion Chart

S

z

y

ABCD

S11

S12

S21

S22

z11

z12

z21

z22

y11

y12

y21

y22

A

B

C

D

S11

S12

S21

S22

1 C S11 1 S22 C S12S21 Z0 1 S11 1 S22 S12S21

2S12

Z0 1 S11 1 S22 S12S21

2S21

Z0 1 S11 1 S22 S12S21

1 S11 1 C S22 C S12S21 Z0 1 S11 1 S22 S12S21

1 S11 1 C S22 C S12S21 Y0 1 C S11 1 C S22 S12S21

2S12

Y0 1 C S11 1 C S22 S12S21

2S21

Y0 1 C S11 1 C S22 S12S21

1 C S11 1 S22 C S12S21 Y0 1 C S11 1 C S22 S12S21

1 C S11 1 S22 C S12S21

2S21

Z0

1 C S11 1 C S22 S12S21

2S21

1 1 S11 1 S22 S12S21

Z0

2S21

1 S11 1 C S22 S12S21

2S21

z11 Z0 z22 C Z0 z12z21

z11 C Z0 z22 C Z0 z12z21

2z12Z0

z11 C Z0 z22 C Z0 z12z21

2z21Z0

z11 C Z0 z22 C Z0 z12z21 z11 C Z0 z22 Z0 z12z21

z11 C Z0 z22 C Z0 z12z21

z11

z12

z21

z22 z22

z11z22 z12z21z12

z11z22 z12z21z21

z11z22 z12z21 z11

z11z22 z12z21 z11

z21

z11z22 z12z21

z21

1

z21 z22

z21

Y0 y11 Y0 C y22 C y12y21

Y0 C y11 Y0 C y22 y12y21

2y12Y0

Y0 C y11 Y0 C y22 y12y21

2y21Y0

Y0 C y11 Y0 C y22 y12y21 Y0 C y11 Y0 y22 C y12y21

Y0 C y11 Y0 C y22 y12y21

y22

y11y22 y12y21y12

y11y22 y12y21y21

y11y22 y12y21 y11

y11y22 y12y21

y11

y12

y21

y22

y22

y21

1

y21

y11y22 y12y21 y21

y11

y21

A C B/Z0 CZ0 D

A C B/Z0 C CZ0 C D

2 AD BC

A C B/Z0 C CZ0 C D

2

A C B/Z0 C CZ0 C DA C B/Z0 CZ0 C D

A C B/Z0 C CZ0 C D

A

C

AD BC

C

1

C

D

C

D

B

BC AD

B

1

B

A

B

A

B

C

D

294 TWO-PORT PARAMETER CONVERSION

For conversion to and from S parameters for circuits with more than two ports, the following formulas may be used [1]. Each variable is understood to be a matrix representing the S, z, or y parameters. The conversion formulas are

where

and

SD F Z GŁ Z C G 1F 1 Z D F 1 I S 1 SG C GŁ F

SD F I GŁY I C GY 1F 1 Y D F 1G 1 I C S 1 I S F

 

 

1

 

0

. . .

0

 

2p

 

 

 

Z01

 

 

 

0

 

1

. . .

0

 

 

 

p

 

F D

2

 

Z02

 

 

 

 

 

 

.

 

.

.

.

 

.

 

 

.

 

.

 

.

.

 

 

.

 

.

 

 

.

 

 

0

 

0

. . .

1

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

2 Z0n

 

 

 

Z01

0

. . .

 

 

0

 

G

0

Z02

. . .

 

 

0

 

D .

. ... .

 

 

.

.

 

 

 

.

 

 

 

 

.

.

 

 

 

.

 

 

 

 

0

0

. . .

 

 

Z0n

D.7

D.8

D.9

D.10

D.11

D.12

The I in Eqs. (D.8) through (D.10) is the square identity matrix, and the Z0i, i D 1, . . . , n, are the characteristic impedances associated with each of the ports. An example of the usage of PARCONV is shown below. In using the program make sure to include the decimals with the input data. The bold values represent user inputs to the program. To exit the program, use Ctrl. C.

TYPE SOURCE AND LOAD REFERENCE IMPEDANCE Z01,Z02 =

50.,50.

Y --> S = YS OR S --> Y = SY

Z --> S = ZS OR S --> Z = SZ

ABCD --> S = AS OR S --> ABCD = SA H --> S = HS OR S --> H = SH

H --> Z = HZ OR Z --> H =ZH

SY

INPUT S11, MAG. AND PHASE (deg)

.9,-80.

INPUT S21, MAG. AND PHASE (deg)

1.9,112.

INPUT S12, MAG. AND PHASE (deg)

.043,48.

 

 

 

 

 

 

 

 

 

 

REFERENCES

295

INPUT S22, MAG. AND PHASE (deg)

 

 

.7,-70.

 

 

 

 

 

 

 

 

 

 

 

 

Y(1,1) =

 

 

 

 

0.162912E-02

J

0.156482E-01

 

 

Y(1,2) =

 

 

 

 

0.304363E-03

J -0.759390E-03

 

 

Y(2,1) =

 

 

 

 

0.360540E-01

J -0.262179E-02

 

 

Y(2,2) =

 

 

 

 

0.483468E-02

J

0.123116E-01

 

 

Y --> S = YS OR S --> Y = SY

 

 

 

 

Z --> S = ZS OR S --> Z = SZ

 

 

 

 

ABCD --> S = AS OR S --> ABCD = SA

 

 

H --> S = HS OR S --> H = SH

 

 

 

 

H --> Z = HZ OR Z --> H =ZH

 

 

 

 

TABLE D.2 S Parameter to Hybrid Parameter Conversion Chart

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S11

 

 

 

 

S11

 

 

 

 

h11 Z0 h22Z0 C 1 h12h21Z0

 

 

 

 

 

h11 C Z0 h22Z0 C 1 h12h21Z0

S12

 

 

 

 

S12

 

 

 

 

2h12Z0

 

 

 

 

 

 

 

 

 

 

h11 C Z0 h22Z0 C 1 h12h21Z0

S21

 

 

 

 

S21

 

 

 

 

2h21Z0

 

 

 

 

 

 

h11 C Z0 h22Z0 C 1 h12h21Z0

 

 

 

 

 

 

 

 

 

 

S22

 

 

 

 

S22

 

 

 

 

h11 C Z0 1 h22Z0 C h12h21Z0

 

 

 

 

 

h11 C Z0 h22Z0 C 1 h12h21Z0

 

 

 

 

 

1 C S11 1 C S22 S12S21

 

 

h11

Z0

 

 

 

h11

 

 

 

1 S11 1 C SS22 C S12S21

 

 

 

 

 

 

 

 

 

 

 

 

h12

 

 

 

 

2S12

 

 

 

 

h12

 

 

 

1 S11 1 C SS22 C S12S21

 

 

 

 

 

 

 

 

 

h21

 

 

 

 

2S21

 

 

 

 

h21

 

 

 

1 S11 1 C SS22 C S12S21

 

 

 

 

 

 

 

 

 

h22

1

 

1 S11 1 S22 S12S21

 

h22

 

 

Z0 1 S11 1 C SS22 C S12S21

 

 

 

 

 

 

 

 

REFERENCES

1.K. Kurokawa, “Power Waves and the Scattering Matrix,” IEEE Trans. Microwave Theory Tech., Vol. MTT-11, pp. 194–202, 1965.

Radio Frequency Circuit Design. W. Alan Davis, Krishna Agarwal

Copyright 2001 John Wiley & Sons, Inc.

Print ISBN 0-471-35052-4 Electronic ISBN 0-471-20068-9

APPENDIX E

Termination of a Transistor Port

With a Load

In the three-port circuit in Fig. E.1, one of the three ports is terminated with an impedance that has a reflection coefficient relative to the reference impedance

Zref:

r

Zi Zref

E.1

Zi C Zref

i D

 

In this expression the subscript i represents s, g, or d depending on whether the device connection is common source, gate, or drain terminated with Zs, Zg, or Zd. The incident and scattered waves from the three-port is

b1

D S11a1

C S12a2

C S13a3

E.2

b2

D S21a1

C S22a2

C S23a3

E.3

b3

D S31a1

C S32a2

C S33a3

E.4

When one of the ports is terminated with ri, then the circuit really is a two-port. The scattering parameters for the common source, gate, and drain connection is shown below:

Common source

S11s D S11

C

S12S21

E.5

1/rs S22

S12s D S13

C

S12S23

E.6

1/rs S22

296

TERMINATION OF A TRANSISTOR PORT WITH A LOAD

297

a1

 

 

 

 

 

 

a 3

 

 

 

 

 

 

 

 

 

 

 

1

G 1

 

 

 

 

D 3

2

 

 

 

 

 

S 2

 

 

 

 

b1

 

 

b 3

 

 

 

 

 

 

 

 

a 2

 

r s

b 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE E.1 Three-port with source terminated with rs.

S21s D S31 C

S32S21

1/rs S22

S22s D S33 C

S23S32

1/rs S22

Common gate

S11g D S22 C

S12S21

1/rg S11

S12g D S23 C

S21S13

1/rg S11

S21g D S32 C

S31S12

1/rg S11

S22g D S33 C

S31S13

1/rg S11

Common drain

S11d D S11 C

S13S31

1/rd S33

S12d D S12 C

S13S32

1/rd S33

S21d D S21 C

S23S31

1/rd S33

S22d D S22 C

S23S32

1/rd S33

E.7

E.8

E.9

E.10

E.11

E.12

E.13

E.14

E.15

E.16

298 TERMINATION OF A TRANSISTOR PORT WITH A LOAD

A numerical example illustrates the process. A given transistor with a set of common source S parameters at 2 GHz is given below:

S11 D 0.136 686

S21 D 3.025 66

S12 D 0.085 6 164

S22 D 0.304 6 136

These are then converted to two-port y parameters. These will be called y11, y31, y13, and y33. The indefinite admittance matrix is formed by adding a third row and column such that the sum of each row and the sum of each column is zero. The resulting 3 ð 3 set of y parameters are obtained:

y11 D 9.681 Ð 10 3 7.695 Ð 10 3

y12 D 12.77 Ð 10 3 C 6.776 Ð 10 3

y13 D 3.086 Ð 10 3 C .9194 Ð 10 3

y21 D 104.2 Ð 10 3 C 20.85 Ð 10 3

y22 D 82.89 Ð 10 3 C 14.39 Ð 10 3

y23 D 21.28 Ð 10 3 C 6.452 Ð 10 3

y31 D 113.8 Ð 10 3 C 13.15 Ð 10 3

y32 D 95.65 Ð 10 3 C 7.618 Ð 10 3

y33 D 18.19 Ð 10 3 C 5.533 Ð 10 3

These are then converted to three-port S parameters using Eq. (10.32) [1]:

S11 D 1.6718 6 168.12°

S12 D 1.6573 63.639°

S13 D 1.0103 613.684°

S21 D 3.1794 6 157.77°

S22 D 2.0959 614.185°

S23 D 0.7156 674.511°

S31 D 1.6455 670.181°

S32 D 2.7564 6 167.02°

S33 D 2.1085 6 153.87°

REFERENCES 299

At this point it is desired to transform these parameters to common gate parameters in which the gate is connected to ground through a short circuit. The resulting common gate two-port S parameters are found from Eqs. (E.9) through (E.12):

S11g D 5.317 6170.925°

S21g D 10.772 6 14.852°

S12g D 2.496 6177.466°

S22g D 6.250 6 7.553°

With the transistor now characterized in the orientation that it is to be used in the oscillator, a choice is made for the impedance at the generator side. If this impedance is chosen to be a 5 nH inductor, the output reflection coefficient is

o D 1.7775 6 30.35°

This shows that oscillation is possible under these loading conditions. The expressions given above for the revised S parameters can be found in [2] using slightly different notation.

REFERENCES

1.K. Kurokawa, “Power Waves and the Scattering Matrix,” IEEE Trans. Microwave Theory Tech., pp. 194–202, 1965.

2.R. M. Dougherty, “Feedback Analysis and Design Techniques,” Microwave J., Vol. 28, pp. 133–150, 1985.

Соседние файлы в предмете Электротехника