
- •1.Металлы. Строение и свойства металлов. Металлическая связь. Типы кристаллических решёток металлов. Полиморфизм и анизотропия.
- •2.Строение реальных металлов. Дефекты кристаллического строения. Зависимость между плотностью дефектов и прочностью металлов.
- •3.Термодинамические основы фазовых превращений. Процессы плавления и кристаллизации.
- •9. Конструкционная прочность материалов
- •Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений
- •Классификация сплавов твердых растворов
- •Вопрос 11. Стали
- •Вопрос 12.
- •13Классификация углеродистых сталей.
- •14. Влияние углерода и постоянных примесей на структуру и свойства стали
- •15. Углеродистая сталь обыкновенного качества общего назначения. Химический состав, свойства, обозначение, применение.
- •15Углеродистая сталь обыкновенного качества общего назначения. Химический состав, свойства, обозначение, применение.
- •18. Общая характеристика процесса графитизации. Классы чугунов по структуре металлической основы. Белый и отбеленный чугун.
- •19. Серый, высокопрочный и ковкий чугун. Строение, свойства, условия получения, обозначение, применение.
- •16 Углеродистая качественная конструкционная сталь. Химический состав, свойства, обозначение, применение
- •17. Углеродистая инструментальная сталь. Химический состав, свойства, обозначение, применение.
- •20.Теория термической обработки стали. Фазовые превращения при нагреве. Рост зерна аустенита при нагреве.
- •21.Перлитное и мартенситное превращение
- •22. Влияние то на свойства стали. Виды то.
- •23. Отжиг и нормализация стали. Отжиг первого и второго рода.
- •24. Способы закалки стали, охлаждающие среды.
- •31.Рессорно-пружинные стали
- •34.Инструментальные легированные стали. Общая характеристика, примеры, применение.
- •35. Бронза и латунь. Общая характеристика, обозначение, применение
- •36. Литейные и деформируемые алюминиевые сплавы
- •38 Получение чугуна. Исходные материалы. Сущность процесса доменной плавки
- •39 Устройство и работа доменной печи схема
- •40. Выплавка стали. Исходные материалы, их подготовка. Сущность процесса
- •41 Способы выплавки стали.
- •42 Производство стали в мартеновских печах. Материалы, устройство мартеновской печи(схема). Продукция мартеновского производства.
- •45 Специальные методы литья
- •46. Классификация процессов обработки давлением
- •47. Нагрев при обработке металлов давлением. Понятие о температурном интервале
- •48. Горячая объемная штамповка. Сущность, схемы и способы гош: в открытых и закрытых штампах, их особенности, преимущества и недостатки
- •55.Контактная сварка
- •56. Классификация методов обработки резанием
- •57. Класификация металлорежущих станков
- •61.Классификация этм. Свойства и количественные характеристики проводников.
- •62.Проводниковые материалы и их применение. Материалы с высокой проводимостью. Материалы с высоким удельным сопротивлением. Резистивные материалы. Материалы и сплавы различного назначения.
- •63.Поляризация диэлектриков. Механизмы поляризации. Виды поляризации.
- •67. Электропроводность, фотопроводимость полупроводников
- •68. Классификация полупроводниковых материалов
- •69. Методы получения монокристаллов
- •72. Магнитные материалы их свойства и применение
- •73. Магнитомягкие материалы
- •74. Магнитотвёрдые материалы
73. Магнитомягкие материалы
магнитно-мягкие материалы — материалы, обладающие свойствами ферромагнетика или ферримагнетика, причём их коэрцитивная сила по индукции составляет не более 4 кА/м. Такие материалы также обладают высокой магнитной проницаемостью и малыми потерями на гистерезис.
К магнитомягким материалам относят:
1. Технически чистое железо (электротехническая низкоуглеродистая сталь).
2. Электротехнические кремнистые стали.
3. Железоникелевые и железокобальтовые сплавы.
4. Магнитомягкие ферриты.
Магнитные свойства низкоуглеродистой стали (технически чистого железа) зависят от содержания примесей, искажения кристаллической решетки из-за деформации, величины зерна и термической обработки. По причине низкого удельного сопротивления технически чистое железо в электротехнике используется довольно редко, в основном для магнитопроводов постоянного магнитного потока.
Электротехническая кремнистая сталь является основным магнитным материалом массового потребления. Это сплав железа с кремнием. Легирование кремнием позволяет уменьшить коэрцитивную силу и увеличить удельное сопротивление, то есть снизить потери на вихревые токи.
Листовая электротехническая сталь, поставляемая в отдельных листах или рулонах, и ленточная сталь, поставляемая только в рулонах - являются полуфабрикатами, предназначенными для изготовления магнитопроводов (сердечников).
Магнитопроводы формируют либо из отдельных пластин, получаемых штамповкой или резкой, либо навивкой из лент.
Железоникелевые сплавы называют пермаллоями. Они обладают большой начальной магнитной проницаемостью в области слабых магнитных полей. Пермаллои применяют для сердечников малогабаритных силовых трансформаторов, дросселей и реле.
Ферриты представляют собой магнитную керамику с большим удельным сопротивлением, во много раз превышающим сопротивление железа. Ферриты применяют в высокочастотных цепях, так как их магнитная проницаемость практически не снижается с увеличением частоты.
Недостатком ферритов является их низкая индукция насыщения и низкая механическая прочность. Поэтому ферриты применяют, как правило, в низковольтной электронике.
74. Магнитотвёрдые материалы
Магнитотвёрдые материалы – материалы, характеризующиеся большой коэрцитивной силой и остаточной индукцией. Используются для изготовления постоянных магнитов различного назначения.
К ним относятся: углеродистые, вольфрамовые, хромистые, кобальтовые стали, коэрцитивная сила которых равна 5000...13000 А/м, а остаточная индукция – 0,7...1,0 Т.
Обладают ковкостью, поддаются прокатке и механической обработке.
Магнитотвердыми материалами являются также сплавы с различным содержанием железа, алюминия, никеля, кремния, кобальта.
Они называются альни, альниси, альнико, магнико и др.
Обладают прекрасными магнитными свойствами. Их коэрцитивная сила равна 20000...60000 А/м, а остаточная индукция – 0,2...2,25 Т.
Магниты из этих сплавов изготавливаются отливкой и обрабатываются только шлифованием.
Для получения высокой коэрцитивной силы в магнитных материалах кроме выбора химического состава используют технологии, оптимизирующие кристаллическую структуру и затрудняющие процесс перемагничивания. Это закалка сталей на мартенсит, дисперсионное твердение сплавов, создание высоких внутренних механических напряжений и др. В результате затрудняются процессы смещения доменных границ. У высококоэрцитивных сплавов магнитная текстура создается путем их охлаждения в сильном магнитном поле.
Применяют магнитотвердые материалы для производства постоянных магнитов. Они являются источниками постоянных магнитных полей, используемых в различной аппаратуре в электро- и радиотехнике, автоматике, приборостроении, электронике, в устройствах электромагнитной записи, фокусирующих устройствах для телевизоров, микрофонах, электроизмерительных приборах, микроэлектронике, СВЧ-приборах и т.д. Их используют в электрических машинах малой мощности, для записи и хранения цифровой, звуковой и видеоинформации и др. Преимущества постоянных магнитов по сравнению с электромагнитами постоянного тока - повышенная работоспособность; экономия материалов и потребления энергии; экономическая и техническая выгода применения.