
- •1.Металлы. Строение и свойства металлов. Металлическая связь. Типы кристаллических решёток металлов. Полиморфизм и анизотропия.
- •2.Строение реальных металлов. Дефекты кристаллического строения. Зависимость между плотностью дефектов и прочностью металлов.
- •3.Термодинамические основы фазовых превращений. Процессы плавления и кристаллизации.
- •9. Конструкционная прочность материалов
- •Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений
- •Классификация сплавов твердых растворов
- •Вопрос 11. Стали
- •Вопрос 12.
- •13Классификация углеродистых сталей.
- •14. Влияние углерода и постоянных примесей на структуру и свойства стали
- •15. Углеродистая сталь обыкновенного качества общего назначения. Химический состав, свойства, обозначение, применение.
- •15Углеродистая сталь обыкновенного качества общего назначения. Химический состав, свойства, обозначение, применение.
- •18. Общая характеристика процесса графитизации. Классы чугунов по структуре металлической основы. Белый и отбеленный чугун.
- •19. Серый, высокопрочный и ковкий чугун. Строение, свойства, условия получения, обозначение, применение.
- •16 Углеродистая качественная конструкционная сталь. Химический состав, свойства, обозначение, применение
- •17. Углеродистая инструментальная сталь. Химический состав, свойства, обозначение, применение.
- •20.Теория термической обработки стали. Фазовые превращения при нагреве. Рост зерна аустенита при нагреве.
- •21.Перлитное и мартенситное превращение
- •22. Влияние то на свойства стали. Виды то.
- •23. Отжиг и нормализация стали. Отжиг первого и второго рода.
- •24. Способы закалки стали, охлаждающие среды.
- •31.Рессорно-пружинные стали
- •34.Инструментальные легированные стали. Общая характеристика, примеры, применение.
- •35. Бронза и латунь. Общая характеристика, обозначение, применение
- •36. Литейные и деформируемые алюминиевые сплавы
- •38 Получение чугуна. Исходные материалы. Сущность процесса доменной плавки
- •39 Устройство и работа доменной печи схема
- •40. Выплавка стали. Исходные материалы, их подготовка. Сущность процесса
- •41 Способы выплавки стали.
- •42 Производство стали в мартеновских печах. Материалы, устройство мартеновской печи(схема). Продукция мартеновского производства.
- •45 Специальные методы литья
- •46. Классификация процессов обработки давлением
- •47. Нагрев при обработке металлов давлением. Понятие о температурном интервале
- •48. Горячая объемная штамповка. Сущность, схемы и способы гош: в открытых и закрытых штампах, их особенности, преимущества и недостатки
- •55.Контактная сварка
- •56. Классификация методов обработки резанием
- •57. Класификация металлорежущих станков
- •61.Классификация этм. Свойства и количественные характеристики проводников.
- •62.Проводниковые материалы и их применение. Материалы с высокой проводимостью. Материалы с высоким удельным сопротивлением. Резистивные материалы. Материалы и сплавы различного назначения.
- •63.Поляризация диэлектриков. Механизмы поляризации. Виды поляризации.
- •67. Электропроводность, фотопроводимость полупроводников
- •68. Классификация полупроводниковых материалов
- •69. Методы получения монокристаллов
- •72. Магнитные материалы их свойства и применение
- •73. Магнитомягкие материалы
- •74. Магнитотвёрдые материалы
67. Электропроводность, фотопроводимость полупроводников
Электропроводность - способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению.
Единица измерения – сименс(См)
Тела, проводящие электрический ток, называются проводниками, в отличие от изоляторов (диэлектриков). Проводники всегда содержат свободные носители заряда — электроны, ионы, упорядоченное движение которых и есть электрический ток.
Удельной проводимостью - мера способности вещества проводить электрический ток. Электрическая проводимость G проводника длиной L с площадью поперечного сечения S может быть выражена через удельную проводимость вещества, из которого сделан проводник, следующей формулой:
Удельная электропроводность измеряется в сименсах на метр (См/м)
Фотопроводимость полупроводников — увеличение электропроводности полупроводников под действием электромагнитного излучения — может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей. В первом случае при поглощении фотонов, соответствующих собственной полосе поглощения полупроводника, т. е. когда энергия фотонов равна или больше ширины запрещенной зоны (h E), могут совершаться перебросы электронов из валентной зоны в зону проводимости, что приведет к появлению добавочных (неравновесных) электронов (в зоне проводимости) и дырок (в валентной зоне). В результате возникает собственная фотопроводимость, обусловленная как электронами, так и дырками.
68. Классификация полупроводниковых материалов
Полупроводниковые материалы, вещества с четко выраженными свойствами полупроводников в широком интервале температур, включая комнатную (~ 300 К), являющиеся основой для создания полупроводниковых приборов. Для полупроводниковых материалов характерна высокая чувствительность электрофизических свойств к внешним воздействиям (нагрев, облучение, деформации и т.п.), а также к содержанию структурных дефектов и примесей.
Полупроводниковые материалы по структуре делятся на кристаллические, твердые аморфные и жидкие. Наибольшее практическое применение находят неорганические кристаллические полупроводниковые материалы.
Полупроводниковыми свойствами могут обладать как неорганические, так и органические вещества. Основу электроники составляют неорганические полупроводники. Неорганические полупроводники делятся на твердые и жидкие. Твердые - на кристаллические, поликристаллические и аморфные. Кристаллические в свою очередь делятся на элементарные, химические соединения и твердые растворы. К элементарным относятся Si и Gе. К химическим соединениям - соединения типа A3B5, A2B6, A4B4, A4B6 Полупроводники являются основой активных приборов, способных усиливать мощность или преобразовывать один в другой различные виды энергии в малом объеме твердого тела без существенных потерь. Это обусловило широкое применение полупроводников в микроэлектронике и оптоэлектронике.
Примеси в полупроводниках Различают примесные и собственные (т.е. беспримесные) полупроводники. В собственных полупроводниках переход электронов в зону проводимости осуществляется только из валентной зоны, поскольку в запрещенной зоне отсутствуют разрешенные уровни, вносимые примесными атомами. Носителями заряда в таком полупроводнике являются электроны в зоне проводимости и дырки в валентной зоне. Общее количество носителей в обеих зонах совпадает.