Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KP ATP-131 / Курсовая работа. Юдина А. В..doc
Скачиваний:
26
Добавлен:
31.05.2015
Размер:
224.26 Кб
Скачать

ГОУВПО «Воронежский государственный технический университет» Факультет энергетики и систем управления Кафедра высшей математики и физико-математического моделирования

Курсовая работа

по дисциплине дискретная математика на тему:

«Разработка схемы включения-выключения светильника»

Выполнила: студентка гр. АТР-131 Юдина А.В

Принял: доц. Купцов В. С.

Воронеж 2013 г.

Содержание

Условие задачи…………………………………………………………………………….3

Теоретическое введение…………………………………………………………………..4

Решение………………………………………………………………………………… 10

Заключение……………………………………………………………………………….12

Список литературы………………………………………………………………………13

Условие задачи

Разработать схему включения-выключения светильника, предусматривающую 3 независимых пункта управления. На каждом пункте установлен переключатель на два положения: перевод любого переключателя из одного положения в другое вызывает изменение состояния светильника.

Теоретическое введение

Дискретная математика, или дискретный анализ – область математики, которая занимается исследованием структур и задач на конечных множествах. Поэтому в качестве синонима иногда используется термин «конечная математика». Можно считать общепринятым деление математики на непрерывную и дискретную. Последняя представляет собой важное направление, имеющее характерные для него предмет исследований, методы и задачи. Специфика задач дискретной математики в первую очередь предполагает отказ от основных понятий классической математики – предела и непрерывности. Поэтому для задач дискретной математики обычные средства классического анализа являются вспомогательными. Дискретная и непрерывная математика взаимно дополняют друг друга. Понятия и методы одной часто используются в другой. Один и тот же объект может рассматриваться с двух точек зрения и в зависимости от этого выбирается непрерывная или дискретная математика. При исследовании, анализе и решении управленческих проблем, моделировании объектов исследования и анализа широко используются дискретные методы формализованного представления, являющиеся предметом рассмотрения в дискретной математике. К ним относятся методы, основанные на теоретико-множественных представлениях, графы, алгоритмы, математическая логика и др. Дискретная математика предлагает:

  • универсальные средства (языки) формализованного представления;

  • способы корректной переработки информации, представленной на этих языках;

  • возможности и условия перехода с одного языка описания явлений на другой с сохранением содержательной ценности моделей.

Сегодня дискретная математика является важным звеном математического образования. Умение проводить анализ, композицию и декомпозицию информационных комплексов и информационных процессов – обязательное квалификационное требование к специалистам в области информатики.

Элементы математической логики.

Математическая логика — раздел науки, истоки которого восходят к Аристотелю (384 -322 г. до н. э.). Как математическая дисциплина начала формироваться в середине XIX в., благодаря работам английского логика и математика Дж. Буля (1815-1864).

Целью логики является анализ методов рассуждений, при этом логика, прежде всего, интересуется формой, а не содержанием рассуждений, то есть выясняет, следует истинность заключения из истинности посылок. Это время характеризовано кризисом в физике, обусловленным ломкой старых представлений о материальном объекте, не учитывающих, что всякий материальный объект неисчерпаем по своим свойствам; кризисом в математике, обусловленных открытием порядков, то - есть рассуждений, приводящих к противоречиям. Известны и логические парадоксы.

1. Примером множеств являются множество всех студентов группы, множество преподавателей, множество всех людей. Объекты, из которых состоит множество, называются его элементами. Множество могут быть и элементами множеств. Например, множество студенческих групп в качестве элементов содержит множество студентов отдельных групп. Большинство множеств не являются элементами самих себя. Например, множество всех людей не являются элементом себя, так как само не человек. Однако множество всех множеств — элемент самого себя.

Рассмотрим теперь множество А всех таких множеств Х, что Х не есть элемент х. Согласно определению, если А есть элемент А, то А также и не есть элемент А, а если А не есть элемент А, то А есть элемент А. В любом случае А есть элемент А и А не есть элемент А. Этот парадокс открыт Б. Расселом в 1902г.

Семантический парадокс «лжеца» таков.

Некоторое лицо говорит: «Высказывание, которое я сейчас произнесу, ложно». Стоящее в кавычках высказывание не может быть без противоречия ни истинным, ни ложным. Этот парадокс был хорошо известен в древности (парадокс Эвбулида — IV в. до н.э.).

Так как логические рассуждения составляют скелет всей математики и теория множеств лежит в ее основе, то парадоксы побудили математиков к поиску решения проблем и были предложены различные аксиоматические теории.

Главная цель применение в логике математической символики заключалась в том, чтобы свести операции с логическими заключениями к формальным действиям над символами. При этом исходные положения записываются формулами, которые преобразуются по определенным законам, а полученные результаты истолковываются в соответствующих понятиях.

Логика нашла энергичные применение в вычислительной технике в теории преобразовании и передачи информации, в экономике, биологии, психологии и т.д.

Математическая логика разделяется на ряд отдельных разделов: двузначная, многозначная, пороговая, непрерывная, нечеткая, порядковая логики.

Объектом математической логики являются любые дискретные конечные системы, а ее главная задача — структурное моделирование таких систем.