Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Документ Microsoft Office Word

.docx
Скачиваний:
20
Добавлен:
30.05.2015
Размер:
48.79 Кб
Скачать

1 вопрос.БЕЛКИ. СТРУКТУРА И ФУНКЦИИ

Белки или протеины количественно преобладают над всеми другими макромолекулами живой клетки. Белки участвуют во всех биологических процессах, выполняя разнообразные функции: ферментативный катализ; транспорт и накопление; сокращение и движение; иммунная защита; передача информации в клетку; регуляция метаболизма; механическая опора и пр. Каждый белок имеет уникальную, свойственную лишь ему структуру и в такой же мере уникальную функцию, отличающуюся от функций других белков.

Структура белка

Белки - это высокомолекулярные соединения (полимеры), состоящие из a -аминокислот - мономерных звеньев, соединенных между собой пептидными связями. Все 20 аминокислот, встречающиеся в белках, это a -аминокислоты, общим признаком которых является наличие аминогруппы - NН2 и карбоксильной группы - СООН у a -углеродного атома. a -аминокислоты отличаются друг от друга структурой группы R и, следовательно, свойствами. Все аминокислоты можно сгруппировать на основе полярности R-групп, т.е. их способности взаимодействовать с водой при биологических значениях рН.

Пептидные связи образуются при взаимодействии a -аминогруппы одной аминокислоты с a -карбоксильной группой другой аминокислоты: Пептидная связь - это амидная ковалентная связь, соединяющая аминокислоты в цепочку. Следовательно, пептиды - это цепочки аминокислот. Полипептидная цепь имеет определенное направление, так как у неё разные концы - либо свободная a -аминогруппа (N-конец), либо свободная a -карбоксильная группа (С-конец):

Изображение последовательности аминокислот в цепи начинается с N-концевой аминокислоты. С неё же начинается нумерация аминокислотных остатков. В полипептидной цепи многократно повторяется группа: -NH-CH-CO-. Эта группа формирует пептидный остов. Следовательно, полипептидная цепь состоит из остова (скелета), имеющего регулярную, повторяющуюся структуру, и отдельных боковых цепей R-групп. Первичная структура характеризуется порядком (последовательностью) чередования аминокислот в полипептидной цепи. Даже одинаковые по длине и аминокислотному составу пептиды могут быть разными веществами потому, что последовательность аминокислот в цепи у них разная. Последовательность аминокислот в белке уникальна и детерминируется генами. Даже небольшие изменения первичной структуры могут серьезно изменять свойства белка. Было бы неправильно заключить, что каждый аминокислотный остаток в белке необходим для сохранения нормальной структуры и функции белка. Например, были выявлены многие варианты последовательностей гемоглобина, функционирующие нормально. Объяснение этого заключается в понимании конформации белка и будет дано позднее.

Конформация полипептидных цепей

Функциональные свойства белков определяются их конформацией, т.е. расположением полипептидной цепи в пространстве. Уникальность конформации для каждого белка определяется его первичной структурой. В белках различают два уровня конформации пептидной цепи - вторичную и третичную структуру. Вторичная структура белков обусловлена способностью групп пептидной связи к водородным взаимодействиям: C=O....HN.

По обеим сторонам жесткой пептидной связи возможно вращение: y и j -углы, характеризующие вращение относительно одинарных связей С a -C и C a -N.

Пептид стремится принять конформацию с максимумом водородных связей. Однако возможность их образования ограничивается тем, что пептидная связь имеет частично двойной характер, поэтому вращение вокруг нее затруднено. Пептидная цепь приобретает не произвольную, а строго определенную конформацию, фиксируемую водородными связями. Известны несколько способов укладки полипептидной цепи: a -спираль - образуется внутрицепочечными водородными связями между NH-группой одного остатка аминокислоты и CO-группой четвертого от нее остатка; b -структура (складчатый лист) - образуется межцепочечными водородными связями или связями между участками одной полипептидной цепи изогнутой в обратном направлении; беспорядочный клубок - это участки, не имеющие правильной, периодической пространственной организации. Но конформация этих участков также строго обусловлена аминокислотной последовательностью. Содержание a -спиралей и b -структур в разных белках различно: у фибриллярных белков - только a -спираль или только b -складчатый лист; а у глобулярных белков - отдельные фрагменты полипептидной цепи: либо a -спираль, либо b -складчатый лист, либо беспорядочный клубок.

Конформация полипептидных цепей: а - a -спираль, б - b -складчатый лист.

В одном и том же белке могут присутствовать все три способа укладки полипептидной цепи:

Третичная структура глобулярных белков представляет ориентацию в пространстве полипептидной цепи, содержащей a -спирали, b -структуры и участки без периодической структуры (беспорядочный клубок). Дополнительное складывание скрученной полипептидной цепи образует компактную структуру. Это происходит, прежде всего, в результате взаимодействия между боковыми цепями аминокислотных остатков. Существует несколько видов взаимодействия между R-группами, в основном нековалентного характера:

Связи, стабилизирующие третичную структуру:

электростатические силы притяжения между R-группами, несущими противоположно заряженные ионогенные группы (ионные связи);

водородные связи между полярными (гидрофильными) R-группами;

гидрофобные взаимодействия между неполярными (гидрофобными) R-группами;

дисульфидные связи между радикалами двух молекул цистеина. Эти связи ковалентные. Они повышают стабильность третичной структуры, но не всегда являются обязательными для правильного скручивания молекулы. В ряде белков они могут вообще отсутствовать.

Пространственная структура миоглобина.

В полипептидной цепи показаны только a -углеродные атомы. Красным показан гем (небелковый компонент).

Доменные белки содержат обособленные глобулы - домены, образованные одной и той же пептидной цепью. Домены соединены пептидными перемычками. Вторичная и третичная укладка полипептидной цепи белка полностью определяется его первичной структурой.

Денатурация

Белковая молекула имеет нативную (функциональную) конформацию благодаря наличию большого числа слабых связей и быстро денатурирует при изменении условий среды, от которых эти силы зависят. Изменение температуры, ионной силы, рН, а также обработка органическими или некоторыми дестабилизирующими агентами может привести к нарушению нативной конформации, что и называется денатурацией. Денатурирующие вещества образуют связи с аминогруппами или карбонильными группами пептидного остова или некоторыми боковыми остатками аминокислот, подменяя собственные внутримолекулярные связи в белке, вследствие чего вторичная и третичная структуры изменяются. Эти изменения не затрагивают первичную структуру, при этом биологическая активность белка утрачивается.

Ренативация

При определенных условиях денатурированный белок может быть ренативирован. Это происходит при удалении денатурирующего или дестабилизирующего фактора. Например, при удалении мочевины диализом полипептиды самопроизвольно восстанавливают свою нативную конформацию. То же происходит при медленном охлаждении денатурированного нагреванием белка:

Это подтверждает, что характер укладки пептидной цепи предопределен первичной структурой.

Взаимодействие белков с лигандами

Основным свойством белка, обеспечивающим его функцию, является избирательное взаимодействие с определенным веществом - лигандом. Лигандами могут быть вещества разной природы, как низкомолекулярные соединения, так и макромолекулы, в том числе и белки. На белковых молекулах есть участки, к которым присоединяется лиганд - центры связывания или активные центры. Центры связывания формируются из аминокислотных остатков, сближенных в результате формирования вторичной и третичной структуры. Связи между белком и лигандом могут быть нековалентными и ковалентными. Высокая специфичность взаимодействия («узнавания») белка и лиганда обеспечивается комплементарностью структуры центра связывания пространственной структуре лиганда. Под комплементарностью понимают химическое и пространственное соответствие активного центра белка и лиганда. Взаимодействие между белком Р и лигандом L описывается уравнением:

белок + лиганд↔ белково-лигандный комплекс.

Kдисс.= [P]x[L]/[PL]. Здесь Кдисс. представляет собой константу диссоциации комплекса. Из уравнения равновесия реакции следует, что если [P] = [PL], то Кдисс.=[L]. Равенство [P] и [PL] наступает при полунасыщении белка лигандом, т.е. 50% молекул белка связаны с лигандом; а 50% свободны. Значит, Кдисс. равна такой концентрации L, при которой достигается насыщение белка на 50%. Изменение концентрации PL при постоянной концентрации Р и возрастающей концентрации L описывается гиперболической кривой. Максимальная величина PL означает, что весь белок связан с лигандом (кривая насыщения):

График насыщения белка лигандом

По кривой насыщения можно определить Кдисс. и, следовательно, оценить сродство лиганда к белку. Чем меньше Кдисс., тем больше сродство L и P.

Четвертичная структура и кооперативность

В белках различают первичную, вторичную, третичную и четвертичную структуры:

Уровни структурной организации белка Четвертичная структура характерна для белков, построенных из двух или более пептидных цепей. Белки такого типа называются олигомерами. Четвертичная структура - это и количество, и способ укладки полипептидных цепей (протомеров) в пространстве:

Четвертичная структура гемоглобина: а – модель молекулы гемоглобина, каждый протомер содержит гем (изображен в форме диска); б - схема комплементарности контактных поверхностей протомеров.

Протомеры связаны друг с другом посредством лишь нековалентных связей (ионных, водородных, гидрофобных). Причем протомеры взаимодействуют друг с другом только определенными участками своей поверхности (контактные участки). Взаимное «узнавание» контактных участков происходит по принципу комплементарности. Каждый протомер взаимодействует с другим во многих точках. Следовательно, ошибочные комплексы в олигомере практически невозможны. Олигомерные белки способны взаимодействовать с несколькими лигандами в центрах, удаленных друг от друга. Связывание одного протомера с лигандом изменяет конформацию этого протомера, а также всего олигомера и, кроме того, сродство к другим лигандам. Таким образом, функциональная активность олигомерных белков может регулироваться аллостерическими лигандами. Связь между структурой белка и его функцией можно рассмотреть на примере двух родственных белков: миоглобина и гемоглобина. Миоглобин - мономер (состоит из одной полипептидной цепи), основная его функция - запасание кислорода в тканях. Имея высокое сродство к кислороду, миоглобин легко присоединяет его и отдает кислород только при интенсивной мышечной работе, когда парциальное давление кислорода падает ниже 10 мм рт. ст. Гемоглобин - тетрамер (состоит из четырех протомеров). Основная функция гемоглобина - обратимое связывание с кислородом в легких, где парциальное давление кислорода высокое и гемоглобин взаимодействует с четырьмя молекулами кислорода. На рисунке приведены данные о способности миоглобина и гемоглобина связывать кислород:

Кривая насыщения кислородом миоглобина и гемоглобина

Гиперболическая форма кривой у миоглобина характерна для процесса связывания одной молекулы лиганда (в данном случае О2 ) единственным местом в белковой молекуле, состоящей из одной полипептидной цепи. Сигмоидальная кривая, полученная для гемоглобина, характерна для белков, содержащих несколько пептидных цепей и имеющих несколько мест связывания. В данном случае проявляется положительный кооперативный эффект, который объясняется следующим образом: первый связанный лиганд (О2 ) облегчает связывание второй молекулы О2 со вторым гемом, что в свою очередь облегчает связывание третьей молекулы О2 с третьим гемом, а это облегчает связывание последней молекулы О2 . В тканях СО2 и Н2О, образующиеся при катаболизме пищевых веществ, взаимодействуют с гемоглобином и уменьшают его сродство к кислороду, что облегчает поступление кислорода в ткани. В эритроцитах имеется также аллостерический лиганд 2,3-дифосфоглицерат, способный взаимодействовать с дезоксигемоглобином. Это препятствует обратному связыванию освободившегося кислорода с гемоглобином. Таким образом, связывание гемоглобина с аллостерическими лигандами в тканях, при относительно высоком парциальном давлении, обеспечивает поступление кислорода в ткани. Из рассмотренных примеров следует заключить, что аллостерический эффект является результатом связывания лиганда со специфическим участком белка. Это вызывает значительное изменение в белковой молекуле, которая в свою очередь влияет на активность другого, пространственно удаленного участка. Кооперативные изменения конформации олигомерных белков составляют основу механизма регуляции функциональной активности не только гемоглобина, но и многих других белков.

Простые и сложные белки

Если белки кроме пептидных цепей содержат еще компоненты неаминокислотной природы, то такие белки называются сложными. Небелковую часть называют простетической группой, а белковую апопротеином. Сложный белок холопротеин может диссоциировать на компоненты: Холопротеин ↔ апопротеин + простетическая группа. Направление реакции зависит от прочности связи компонентов холопротеина. Простетической группой могут быть органические вещества, ионы металлов, нуклеиновые кислоты, углеводы, липиды и др. вещества.

Структура белков.

Каждому белку свойственна своя особая геометрическая форма, или конформация.

Первичная структура белка. (слайд 9, приложение 1)

Под первичной структурой белка понимают число и последовательность аминокислот, соединенных друг с другом пептидными связями в полипептидной цепи. Соединяясь, молекулы аминокислот образуют связи между углеродом кислотной и азотом основной групп. Такие связи называются ковалентными, а в данном случае — пептидными связями. Соединение двух аминокислот в одну молекулу называется дипептидом, трех аминокислот — трипептидом и т. д., соединение, состоящее из 20 и более аминокислотных остатков, — полипептидом. Первый белок, для которого удалось выяснить аминокислотную последовательность – это инсулин, аминокислотная последовательность белка определяет его биологическую функцию. В свою очередь эта аминокислотная последовательность однозначно определяется нуклеотидной последовательностью ДНК. Замена одной-единственной аминокислоты в молекулах данного белка может резко изменить его функцию, как это наблюдается, например, при так называемой серповидноклеточной анемии. Однако молекула белка в виде цепи аминокислотных остатков, последовательно соединенных между собой пептидными связями, еще не способна выполнять специфические функции.

Вторичная структура. (слайд 10, приложение 1)

Обычно белковая молекула напоминает растянутую пружину. Путем образования водородных связей между остатками карбоксильных и аминогрупп разных аминокислот молекула принимает вид спирали (ά-структура) или складчатого слоя — «гармошки» (β-структура). Белок данной конформации не обладает биологической активностью.

Третичная структура. (слайд 11, приложение 1)

Третичная структура образуется благодаря взаимодействию радикалов, в частности радикалов аминокислоты цистеина, которые содержат серу. Атомы серы двух аминокислот, находящихся на некотором расстоянии друг от друга в полипептидной цепи, соединяются, образуя так называемые дисульфидные, илиS-S, связи. Благодаря этим взаимодействиям, а также другим, менее сильным связям, белковая спираль сворачивается и приобретает форму шарика, или глобулы. Таким образом третичная структура поддерживается связями трех типов – ионными, водородными и дисульфидными, а также гидрофобными взаимодействиями. Многие белки, обладающие третичной структурой, могут выполнять свою биологическую роль в клетке.

Четвертичная структура. (слайд 12, приложение 1)

Она представляет собой функциональное объединение нескольких (двух, трех и более) молекул белка, обладающих третичной структурной организацией. Пример такого сложного белка — гемоглобин. Его молекула состоит из четырех связанных между собой молекул. Другим примером может служить гормон поджелудочной железы — инсулин, включающий два компонента. В состав четвертичной структуры некоторых белков включаются помимо белковых субъединиц и разнообразные небелковые компоненты. Тот же гемоглобин содержит сложное гетероциклическое соединение, в состав которого входит железо.

4. Свойства белков.

Белки, как и другие неорганические и органические соединения, обладают рядом физико-химических свойств, обусловленных их структурной организацией. Это во многом обусловливает функциональную активность каждой молекулы.(организация работы с текстом учебника на стр. 94-95).

Учитель: Назовите свойства белков?

Ответы учеников:

белки — преимущественно водорастворимые молекулы и, следовательно, могут проявлять свою функциональную активность только в водных растворах.

белковые молекулы несут большой поверхностный заряд. Это определяет целый ряд электрохимических эффектов, например изменение проницаемости мембран каталитической активности и других функций.

белки термолабильны, т. е. проявляют свою активность в узких температурных рамках:

денатурация- разрушение структурной организации белков. Вначале разрушается самая слабая структура — четвертичная, затем третичная, вторичная и при более жестких условиях — первичная. Вызывать денатурацию белков могут разнообразные факторы: нагревание или воздействие каких-либо излучений; сильные кислоты, сильные щелочи или концентрированные растворы солей; тяжелые металлы; органические растворители.

ренатурация - это свойство белков восстанавливать утраченную структуру.Если изменение условий среды не приводит к разрушению первичной структуры молекулы, то при восстановлении нормальных условий среды полностью воссоздается структура белка и его функциональная активность. Это свойство белков широко используется в медицинской и пищевой промышленности приготовления некоторых медицинских препарате, например антибиотиков, вакцин, сывороток, ферментов; для получения пищевых концентратов, сохраняющих длительное время в высушенном виде свои питательные свойства.

ПРОСТЫЕ БЕЛКИ

К простым белкам относят гистоны, протамины, альбумины, глобулины, проламины, глютелины и протеиноиды (или склеропротеины).

Гистоны (от греч. histos - ткань) - тканевые белки многоклеточных организмов, связанных с ДНК хроматина. Это белки небольшой молекулярной массы (11000-24000); по электрохимическим свойствам относятся к белкам с резко выраженными основными признаками (изоэлектрическая точка у разных гистонов колеблется в пределах 9,5-12,0). Гистоны имеют только третичную структуру. Выделяют 5 главных типов или фракций гистонов: Н1, Н2а, Н2b, Н3, Н4. Деление основано на ряде признаков, главным из которых является соотношение лизина и аргинина во фракциях (табл. 1 [показать]).

Выделен дополнительный тип гистонов - гистон Н5, содержащийся в ядерных эритроцитах птиц, амфибий и рыб. Имеются и некоторые другие модификации гистонов, но доля их невелика.

Отношение гистон/ДНК приближается к единице в тканях многоклеточных организмов. В естественных условиях гистоны прочно связаны с ДНК и выделяются в составе нуклеопротеида. Связь гистон - ДНК электростатическая, так как гистоны имеют большой положительный заряд, а цепь ДНК - отрицательный. Гистоноподобные белки встречаются в составе рибосом цитоплазмы клеток. У одноклеточных организмов некоторые из фракций гистонов отсутствуют. У бактерий нет типичных гистонов, а у вирусов есть гистоно-подобные белки.

Основные функции гистонов - структурная и регуляторная. Структурная функция состоит в том, что гистоны участвуют в стабилизации пространственной структуры ДНК, а следовательно, хроматина и хромосом. Четыре фракции гистонов, за исключением Н1, составляют основу нуклеосом, являющихся структурными единицами хроматина; фракция Н1 заполняет фрагменты ДНК между нуклеосомами. Регуляторная функция заключается в способности блокировать передачу генетической информации от ДНК к РНК.

Протамины - своеобразные биологические заменители гистонов, но качественно отличающиеся от них аминокислотным составом и структурой. Это самые низкомолекулярные белки (М 4000-12000), они обладают резко выраженными основными свойствами из-за большого содержания аргинина (до 80%). Как и гистоны, протамины - поликатионные белки; они связываются с ДНК в хроматине спермиев. Замена гистонов на протамины в хроматине спермиев наблюдается не у всех животных. Наиболее типично присутствие протаминов в составе нуклеопротамина в сперматозоидах рыб (в молоках). Отдельные протамины получили свое название по источнику получения: cальмин - протамин из молоки лосося; клупеин - из икры сельди; труттин - из молоки форели; скумбрин - из молоки скумбрии.

Протамины делают компактной ДНК сперматозоидов, т. е. выполняют, как и гистоны, структурную функцию. Однако они, по-видимому, не выполняют регуляторных функций, поэтому и присутствуют в клетках, не способных к делению. Возможно, этим и объясняется биологическая замена в некоторых клетках гистонов на протамины.

Проламины - группа растительных белков, содержащаяся в клейковине семян злаковых растений. Для проламинов характерна нерастворимость в воде, солевых растворах, кислотах и щелочах. Выделяют их экстракцией 70°-ным этанолом. Этот крайний случай растворимости связан, очевидно, с наличием у них неполярных аминокислот и пролина. Проламины получили названия по источнику выделения: глиадины - из зерна пшеницы и ржи; гордеины - из ячменя; авенины - из овса; зеин - из кукурузы и т.д.

Глютелины - тоже растительные белки, нерастворимые в воде, растворах солей и этаноле. Они растворимы в слабых щелочах, очевидно, потому, что в них значительно больше, чем в проламинах, содержится аргинина и меньше пролина.

Альбумины и глобулины - групповое название белков, высаливающихся при разном насыщении нейтральными солями (сульфатом аммония или натрия). При 50%-ном насыщении раствора соли выпадают в осадок глобулины, а при полном (100%-ном) насыщении - альбумины. Альбумины и глобулины содержатся в плазме крови, в клетках и биологических жидкостях организма. Каждая из этих двух групп белков настолько разнородна, что среди них имеются белки с самыми разнообразными функциями.

Альбумины - белки относительно небольшой молекулярной массы (15-70 тыс.); они имеют избыточный отрицательный заряд и кислые свойства (изоэлектрическая точка 4,7) из-за большого содержания глутаминовой кислоты. Это сильно гидратированные белки, поэтому они осаждаются только при большой концентрации водоотнимающих веществ. Характерным свойством альбуминов является высокая адсорбционная способность. Они адсорбируют полярные и неполярные молекулы. Благодаря высокой неспецифической адсорбции различных веществ альбумины плазмы крови играют физиологически важную транспортную роль.

Глобулины - белки с большей, чем альбумины, молекулярной массой (свыше 100000). В отличие от альбуминов они нерастворимы в чистой воде; растворимы в слабых солевых растворах. Глобулины - слабокислые или нейтральные белки (изоэлектрическая точка лежит в интервале рН 6-7,3); содержат меньше, чем альбумины, кислых аминокислот. Это слабогидратированные белки, поэтому и осаждаются они в менее концентрированных растворах сульфата аммония. Некоторые из глобулинов обладают способностью к специфическому связыванию веществ (специфические переносчики), другие, как и альбумины, к неспецифическому связыванию липидорастворимых веществ.

При электрофорезе происходит разделение альбуминов и глобулинов, поскольку они обладают разной подвижностью в электрическом поле. Альбумины как полианионные белки быстрее движутся к аноду, чем глобулины. Поэтому при электрофорезе, например белков сыворотки крови или других биологических жидкостей, на бумаге или других поддерживающих средах белки в зависимости от их подвижности распределяются на фракции (зоны). Глобулины делятся на три главные электрофоретические фракции: α-, β- и γ-глобулины. Среди α-глобулинов выделяют α1- и α2-глобулины; среди β-глобулинов - β1- и β2-глобулины; фракция γ-глобулинов представлена смесью различных иммуноглобулинов.

Электрофорез на бумаге позволяет получить до 5 главных зон белков сыворотки крови (альбумины, α1, α2-, β-, и γ-глобулины). Высокую степень разрешения имеет электрофорез в полиакриламидном геле, дающий возможность выявить до 17 электрофоретических полос разных белков всех главных зон (альбумины, α1, α2-, β1-, β2 и γ-глобулины). При электрофорезе внутриклеточных белков или других жидкостей организма разделение белков происходит по тем же зонам подвижности, что и белков сыворотки крови. Но это не значит, что здесь присутствуют белки с той же функцией, что и в сыворотке крови, хотя электрофоретическая картина их сходна. Поэтому белки сыворотки крови часто используют в качестве стандарта для сравнения с белками, выделенными из разных тканей и жидкостей (при этом говорят, что такой-то неизвестный белок обладает, например, подвижностью α1-глобулина или альбумина и т. д.).

Протеиноиды - белки опорных тканей (костей, хрящей, связок и сухожилий, ногтей, волос и т. д.). Все они относятся к фибриллярным белкам (фиброин, коллаген, кератин, эластин). Они растворимы только в специальных растворителях. Строение и физико-химические свойства этих фибриллярных белков рассмотрены ранее.

Все перечисленные простые белки, строго говоря, не являются простыми. Пожалуй, лишь для гистонов и протаминов применимо это название, да и то с известными оговорками, поскольку в природных условиях они образуют прочные комплексы с ДНК. В остальных белках обнаружены неаминокислотные компоненты (углеводы, липиды, металлы и др.). По этой причине их нельзя назвать простыми. Кроме того, есть большая группа белков, которые ведут себя как альбумины (растворимы в воде), а высаливаются как глобулины. Их называют псевдоглобулинами.

СЛОЖНЫЕ БЕЛКИ,

или белок-небелковые комплексы (прежнее название - протеиды) содержат два компонента - простой белок и небелковое вещество. Последнее называют простетической группой (от греч. prostheto - присоединяю, прибавляю). Простетические группы, как правило, прочно связаны с белковой молекулой. Ниже представлены сведения о химической природе и биологической роли некоторых сложных белков.

ХРОМОПРОТЕИНЫ

Хромопротеины состоят из простого белка и связанного с ним окрашенного небелкового компонента, откуда и произошло их название (от греч. chroma - краска). Среди хромопротеинов различают гемопротеины (содержащие в качестве простетической группы железо), магний-порфирины и флавопротеины (содержащие производные изоаллоксазина). Хромопротеины наделены рядом уникальных биологических функций: они участвуют в таких фундаментальных процессах жизнедеятельности, как фотосинтез, дыхание клеток и целостного организма, транспорт кислорода и углерода, окислительно-восстановительные реакции, свето- и цветовосприятие и др. Таким образом, Хромопротеины играют исключительно важную роль в процессах жизнедеятельности. Достаточно, например, подавить дыхательную функцию гемоглобина путем введения оксида углерода или утилизацию (потребление) кислорода в тканях путем введения синильной кислоты или ее солей (цианидов), ингибирующих ферментные системы клеточного дыхания, как моментально наступает смерть организма.