
- •Введение
- •1. Методические указания по основным разделам курса химии
- •1.1. Электронное строение атома
- •Примеры решения задач
- •1.2. Периодический закон и периодическая система д.И. Менделеева
- •Относительная электроотрицательность элементов
- •Примеры решения задач
- •1.3. Химическая связь
- •Примеры решения задач
- •2S22p2 1s2 (типа He)
- •1.4. Классы неорганических соединений
- •Примеры решения задач
- •1.5. Элементы химической термодинамики и термохимии
- •Примеры решения задач
- •1.6. Химическая кинетика и химическое равновесие
- •Примеры решения задач
- •1.7. Электролитическая диссоциация. Реакции ионного обмена
- •Примеры решения задач
- •1.8. Растворы. Способы выражения концентрации растворов
- •Примеры решения задач
- •Р е ш е н и е. 1) Записываем выражение для молярной концентрации раствора NaOh :
- •Р е ш е н и е. 1) Вспомним, что молярная доля растворенного вещества равна:
- •Р е ш е н и е. 1) Найдем массу 100 мл 15% раствора h2so4:
- •1.9. Коллоидные растворы
- •Примеры решения задач
- •1.10. Растворы неэлектролитов
- •Примеры решения задач.
- •1.11. Окислительно-восстановительные реакции
- •Примеры решения задач
- •1.12. Электрохимические процессы в гетерогенных системах. Гальванические элементы
- •Примеры решения задач
- •1.13. Коррозия металлов
- •Примеры решения задач
- •1.14. Электролиз
- •Примеры решения задач
- •2. Контрольные задания
- •3. Варианты контрольных заданий
- •Литература
Примеры решения задач
Пример 1. Алюминий находится в контакте с цинком. Какой из этих металлов будет окисляться, если эта пара попадет в кислую среду, например, в среду соляной кислоты?
Р е ш е н и е. Из условия задачи следует что металлы находятся в кислой среде – растворе HCl. Раствор HCl – электролит, т.е. электропроводящая среда, следовательно, будет протекать электрохимическая коррозия. Для рассмотрения механизма коррозии воспользуемся предложенным выше алгоритмом.
1) Составим схему коррозионной гальванопары:
Al │ HCl │ Zn
2) Укажем окислитель. Среда кислая, поэтому окислителем (деполяризатором) является ион водорода H+. Следовательно, в этой схеме будет протекать электрохимическая коррозия с водородной деполяризацией.
3) Определим, какой из металлов будет являться анодом, а какой – катодом. Для этого сравним значения стандартных электродных потенциалов алюминия и цинка: Е0Al3+/Al0= – 1,6 B < E0Zn2+/Zn0= – 0,77 B,
Значит, алюминий – более активный металл, он является восстановителем и анодом, а цинк – катодом: Al – анод (А), Zn – катод (К).
4) Укажем направление движения электронов, учитывая, что электроны движутся от анода к катоду, а от катода – к окислителю окружающей среды:
(-) Al│HCl│Zn(+)
5) Запишем электронные уравнения процессов, протекающих на электродах, и составим суммарное уравнение:
(-)(A)
Al0
– 3e
→ Al3+
2
(+)(K) 2Н+ + 2е → Н2↑ 3
2Al0 +6H+ → 2Al3+ + 3H2↑
6) Составим молекулярное уравнение окислительно-восстановительной реакции, протекающей при коррозии: 2Al + 6HCl → 2AlCl3 + 3H2↑
7) Запишем вывод: при коррозии алюминия, находящегося в контакте с цинком, окисляется алюминий. Продуктом его коррозии является соль – хлорид алюминия. На цинковом катоде выделяется водород.
Пример 2. Изделие из меди с оловянным покрытием находится во влажном воздухе. Какой из металлов будет корродировать при нарушении целостности покрытия? К какому типу покрытий относится в этом случае олово?
Р е ш е н и е. Изделие находится во влажном воздухе, который является электропроводящей средой, следовательно, будет протекать электрохимическая коррозия.
1) Составим схему коррозионного гальванического элемента:
Sn │ H2O │ Cu
2) Укажем окислитель. Вода – это нейтральная среда, поэтому окислителем (деполяризатором) является кислород – О2. Следовательно, в этой схеме будет протекать электрохимическая коррозия с кислородной деполяризацией.
3) Определим, какой из металлов будет являться анодом, а какой – катодом. Для этого сравним значения стандартных электродных потенциалов олова и меди:
Е0Sn 2+/ Sn0= – 0,14 B < E0Cu2+/Cu0= + 0,34 B.
Значит, олово – более активный металл, оно является восстановителем и анодом, а медь – катодом: Sn – анод (А), Cu – катод (К).
4) Укажем направление движения электронов, учитывая, что электроны движутся от анода к катоду, а от катода – к окислителю среды:
(–) Sn │H2O │ Cu (+)
5) Запишем электронные уравнения процессов, протекающих на электродах, и составим суммарное уравнение. При написании уравнения катодного процесса следует учитывать, что процесс восстановления протекает в присутствии воды:
(-)(A)
Sn0
– 2e → Sn2+
2
(+)(K) O2 + 2H2O + 4е →4OН– 1
2Sn0 +2O2 + 2H2O → 2Sn2+ +4OH–
6) Составим молекулярное уравнение окислительно-восстановительной реакции, протекающей при коррозии: 2Sn0 +2O2 + 2H2O → 2 Sn(OH)2
7) Запишем вывод: по отношению к меди олово является анодным покрытием, так как в этой паре олово выступает в роли анода. При нарушении целостности покрытия корродировать будет олово. Продуктом его коррозии является основание – гидроксид олова.
Пример 3. Медная деталь разрушается в атмосфере кислорода при температуре 2000С. В чем заключается причина этого явления?
Р е ш е н и е. 1) Определяем характер среды: атмосфера кислорода (О2) при высокой температуре (2000С) – это неэлектропроводящая среда. Следовательно, будет происходить химическая коррозия.
2) Запишем уравнение процесса, протекающего при химической коррозии медной детали:
Cu0
+ O20
= 2CuO
Вывод: происходит окисление меди и на поверхности детали образуется оксидная пленка.