Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
порошковая металлургия.docx
Скачиваний:
42
Добавлен:
28.05.2015
Размер:
208.87 Кб
Скачать

2.2. Температура электролита

При повышении температуры увеличивается подвижность ионов ускоряется их перенос, сохраняется повышенная концентрация катионов у катода. В то же время повышается интенсивность химического взаимодействия выделяемого металла с электролитом, что приводит к снижению количества осадка металла на катоде. Кроме того, возрастает летучесть электролита, ухудшающая условия труда. Практически электролиз водных растворов ведут при температуре электролита 40 – 60 ºС, а электролиз расплавов – при температуре ниже температуры плавления выделяемого металла, обеспечивая минимальное протекание побочных процессов.

2.3. Плотность тока

Плотность тока представляет собой силу тока, проходящего через 1 м2 электрода. Она связывает силу тока, являющегося главным фактором, характеризующим её производительность, с суммарной рабочей площадью катодов или анодов в ванне:

П=J⁄S, где

  • П – плотность тока, 2мА;

  • J – сила тока, А;

  • S – суммарная рабочая площадь катодов или анодов, м2.

Катодная и анодная плотности тока в ванне не совпадают, так как суммарные поверхности катодов и анодов всегда различаются между собой в силу ряда причин. При большой плотности тока на единице площади катода разряжаются больше ионов и таким образом создаются много первичных центров кристаллизации. В связи с малой скоростью роста кристаллов образуются мелкие, дисперсные осадки. Однако высокая плотность тока приводит к выделению на катоде побочных элементов и снижает количество осадка выделяемого металла. Кроме того, с повышением катодной плотности тока растёт и анодная плотность тока, в результате чего на аноде начинается разрядка побочных ионов, приводящая к ухудшению технико-экономических показателей. Поэтому плотность тока должна быть максимально допустимой и не превышать оптимальное значение.

Изменение плотности тока осуществляется за счет изменения силы тока на ванне или изменением числа катодов (катодной поверхности) при постоянной силе тока.

На электролиз и свойства катодного осадка влияют и другие факторы. В частности, расстояние между электродами, длительность наращивания порошка, кислотность электролита, наличие в нем посторонних ионов, скорость циркуляции электролита, форма и состояние поверхности электродов и другие факторы.

Методом электролиза можно получать порошки всех металлов. В настоящее время электролизом получают порошки меди, железа, серебра, цинка, никеля, кадмия, олова, сурьмы, а также их сплавов.

Электролитический метод производства порошков характеризуется невысокой производительностью и довольно высокой себестоимостью получаемого порошка. Однако чистота и высокие технологические свойства электролитических порошков в значительной степени компенсируют недостатки метода.

3. Диссоциация карбонилов

Карбонилы представляют собой химические соединения металлов с оксидом углерода, которые можно выразить общей формулой Mea(CO)c. В основе карбонильного метода лежит способность некоторых металлов под воздействием оксида углерода (СО) образовывать комплексное соединения, называемые карбонилами, которые при определённых условиях могут диссоциировать с образованием порошков. Общим требованием к таким соединениям при получении порошков является их легколетучесть и невысокие температуры образования и термического разложения. Основные свойства некоторых карбонилов приведены в таблице 1.

Карбонильный процесс получения порошков проходит в две стадии по реакциям:

МеаБв + сCO →Mea(CO)c

Mea(CO)c→aMe + cCO На первой стадии исходное сырьё МеаБв, содержащее металл (Ме) в соединении с балластным веществом (Бв) взаимодействует с оксидом углерода (СО), образуя промежуточный продукт – карбонил [Mea(CO)c], который отделяется от балластной примеси благодаря высокой летучести и собирается в чистом виде.

Во второй стадии промежуточный продукт (карбонил) при нагреве диссоциирует на металл и оксид углерода, который обычно возвращают на первую стадию процесса.

Первую стадию карбонильного процесса называют синтезом карбонила металла, а вторую – термическим разложением карбонила.

При синтезе карбонила на поверхности исходного материала, который может быть металлоломом, отходами металлообработки, окисленными рудами и др., адсорбируются газообразные молекулы оксида углерода (СО), вступающие затем в химическое взаимодействие с металлической составляющей сырья. Образующееся карбонильное соединение вначале остаётся на поверхности металла, удерживаемое силами сцепления, а затем удаляется с неё в виде газа. Реакция образования карбонила идёт везде, где оксид углерода соприкасается с поверхностью металла в исходном сырье, а именно снаружи твердого тела, в его трещинах и порах. На образование карбонила оказывают влияние температурные условия, а также присутствие веществ, тормозящих или ускоряющих реакцию.

Таблица 1 – Основные свойства некоторых карбонилов.

Карбонил 

 Цвет и состояние в нормальных условиях

Температура плавления, ºС 

Плотность г/см3 

Продукты разложения карбонилов

 Fe(CO)5

Желтая жидкость

– 19,5

1,453 (при 20 ºС)

Выше 130 ºС Fe и CO

 Fe2(CO)9

 Золотистые, желтые или оранжевые кристаллы

 2,085 (при 18,5 ºС)

При 100 ºС Fe и CO

 Fe3(CO)12

 Темно-зеленые кристаллы

 

 1,996 (при 18 ºС)

При 150 ºС Fe и CO

 Ni(CO)4

 Бесцветная жидкость

– 19

 1,31 (при 20 ºС)

При 0 ºС в вакууме и выше 50 ºС при избыточном давлении 1 ат. Ni и CO

Co(CO)4

Оранжевые кристаллы

51

1,78

Выше 60 ºС Cо и CO

 Cr(CO)6

Бесцветные кристаллы

Возгоняется

1,77

При 200 ºС или освещении Cr и СО

 Mo(CO)6

Бесцветное твердое вещество

Возгоняется

1,96

Мо и СО

 W(CO)6

То же

127

W и CO

Термическая диссоциация карбонила на металл и оксид углерода обычно проходит при относительно невысокой температуре. Сначала появляются атомы металла и газообразные молекулы оксида углерода. Порошковые частицы формируются в результате кристаллизации парообразного металла. Сначала образуются зародыши, а затем из них вырастают крупинки порошка различной формы.

На скорость образования зародышей и на скорость формирования металлических кристаллов влияют степень разряжения в аппарате, концентрация паров металла и главным образом температура. При относительно низкой температуре образуется значительно больше зародышей, чем при повышенной. Увеличение концентрации пара металла и снижение вакуума в аппарате благоприятствует образованию зародышей.

Условия развития зародышей отличны от условий их образования. Скорость роста кристаллов также зависит от температуры процесса и от концентрации паров металла. Однако глубина вакуума влияет на форму и размер частиц металла. В условиях глубокого вакуума образуются очень мелкие частицы с правильно сформированными гранями. В умеренном вакууме образуется смесь правильных кристаллов самых различных размеров, а в неглубоком вакууме появляются дендриты.

В промышленных масштабах карбонильным методом производят порошки никеля, железа, кобальта, хрома, молибдена, вольфрама и некоторых других металлов. Метод позволяет получать и полиметаллические порошки, например железоникелевые, железомолибденовые, железокобальтовые, железоникельмолибденовые. В этом случае термическому разложению подвергают смесь карбонилов соответствующих металлов. Сами карбонилы при этом готовят отдельно. Сплавы можно получать и в том случае, если в аппарат разложения вместе с парами карбонила вводить порошок другого металла. Карбонил разлагается на поверхности порошковых частиц и образуется сплав.