Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
порошковая металлургия.docx
Скачиваний:
42
Добавлен:
28.05.2015
Размер:
208.87 Кб
Скачать

3. Обработка металлов резанием

Производство порошков обработкой металлов резанием на практике используются очень редко. Порошки получают при станочной обработке ком-пактных металлов, подбирая такой режим резания, который обеспечивает обра-зование частиц, а не сливной стружки.

При этом образующиеся отходы в виде крупной стружки целесообразно использовать для дальнейшего измельчения в шаровых, вихревых и других аппаратах, а мелкую стружку и опилки с величиной частиц порошка около 1 мм можно использовать для изготовления изделий без дополнительного дробления. В некоторых случаях применение этого метода для получения порошка является почти единственным. Прежде всего, это относится к тем металлам, которые очень активны по отношению к кислороду, особенно в состоянии высокой дисперсности. Например, по этому способу получают магниевый порошок

К физико-химическим методам получения порошков относят:

  • восстановление оксидов и солей;

  • электролиз;

  • диссоциация карбонилов;

  • гидрометаллургический способ.

1. Восстановление оксидов и солей

Восстановление оксидов и солей является одним из наиболее распро-страненных и экономичных способов, особенно когда в качестве исходного ма-териала используют руды, отходы металлургического производства (окалина) и другие дешевые виды сырья.

Восстановлением в техническом смысле этого слова, называют процесс получения металла из его химического соединения путем отнятия неметаллической составляющей (кислород, солевой остаток) при помощи вещества, называемого восстановителем. Процесс восстановления является одновременно и процессом окисления. Если исходное химическое соединение (оксид, соль) теряет неметаллическую составляющую или восстанавливается, то восстановитель вступает с ней во взаимодействие или окисляется.

В общем случае реакцию восстановления можно записать в виде

МеБ + Х ↔Ме + ХБ, где

  • Ме – любой металл, порошок которого нужно получить;

  • Б – неметаллическая составляющая (кислород, солевой остаток и др.) восстанавливаемого исходного химического соединения;

  • Х – восстановитель;

  • ХБ – химическое соединение восстановителя.

Стрелки означают, что в ходе реакции возможно повторное образование исходного соединения (МеБ) в результате взаимодействия полученного металла (Ме) и соединения восстановителя (ХБ). Для оценки возможности протекания реакции восстановления необходимо сопоставить величины, характеризующие прочность химических связей в соединении металла (МеБ) и образующимся со-единении восстановителя (ХБ). Количественной мерой указанных величин служит величина свободной энергии, высвобождающейся при образовании со-ответствующего химического соединения. Чем больше высвобождается энергии, тем прочнее химическое соединение. Поэтому реакция восстановления возможна лишь в случае, если при образовании соединения восстановителя (ХБ) выделяется энергии больше, чем при образовании соединения металла (МеБ).

Восстановителем может быть только то вещество, которое обладает боль-шим химическим сродством к неметаллической составляющей восстанавливае-мого соединения, чем получаемый металл. В порошковой металлургии в качестве восстановителя наиболее распространены:

  • водород;

  • оксид углерода (СО);

  • конвертируемый природный газ;

  • диссоциированный аммиак;

  • эндотермический газ (эндогаз);

  • твердый углерод (кокс, уголь, сажа);

  • металлы.