Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
21-02-2013_19-11-15 / Лекции по КСЕ студентам ГМУ / Лекц 4. Основные проблемы биологии 2012 КСЕ.doc
Скачиваний:
43
Добавлен:
27.05.2015
Размер:
265.22 Кб
Скачать

4.3. Новейшие достижения генетики: проект «геном челвоека», клонирование, биотехнология

История клонирования началась в далекие сороковые годы в СССР. Тогда советский эмбриолог Георгий Викторович Лопашов разработал метод пересадки (трансплантации) ядер в яйцеклетку лягушки. Результаты исследований он отправил в июне 1948 года в «Журнал общей биологии». Ученому не повезло. В августе 1948 года состоялась печально известная сессия ВАСХНИЛ, где окончательно утвердилось непререкаемое лидерство в биологии известного борца с генетикой Т.Д. Лысенко. Набор статьи Лопашова был рассыпан. Еще бы! Там доказывалась ведущая роль ядра и содержащихся в нем хромосом в индивидуальном развитии организмов. Как это часто случалось в истории российской науки, приоритет достался американским эмбриологам Бригге и Кингу, выполнившим в пятидесятые годы сходные опыты.

В феврале 1997 года появилось сообщение о том, что в лаборатории Яна Вильмута в шотландском городе Эдинбурге в Рослинском институте сумели клонировать овцу. Как стало известно позднее, только один опыт из 236 стал удачным. Так появилась на свет овечка Долли, содержащая генетический материал взрослой овцы, умершей три года назад.

Извлеченные яйцеклетки поместили в искусственную питательную среду с добавлением эмбриональной телячьей сыворотки при температуре 37 градусов Цельсия и провели операцию удаления собственного ядра. Для обеспечения яйцеклетки генетической информацией от клонируемого организма использовали разные клетки донора. Наиболее удобными оказались диплоидные клетки молочной железы взрослой беременной овцы. «Развивающийся зародыш культивировали в течение 6 дней в искусственной химической среде или яйцеводе овцы, перетянутом лигатурой ближе к рогу матки, -- отмечает Л.И. Корочкин -- На стадии морулы или бластоцисты эмбрионы (от одного до трех) трансплантировали в матку приемной матери, где они могли развиваться до рождения».

Группа ученых из университета в Гонолулу во главе с Риузо Янагимачи решили усовершенствовать метод Вильмута. Они изобрели микропипетку, с помощью которой можно было безболезненно извлекать ядро из соматической клетки и трансплантировать его в яйцеклетку с удаленным ядром. Еще одно «ноу-хау» группы Янагимачи -- использование в качестве донорских относительно менее дифференцированных ядер клеток, окружающих яйцеклетки.

Исследования Вильмута и ученых из Гонолулу привели, без сомнения, к выдающимся достижениям. Но перспективы их дальнейшего развития следует оценивать с осторожностью. Получить абсолютно точную копию данного конкретного животного очень сложно. По крайней мере, гораздо сложнее, чем это может показаться при первом знакомстве с проблемой. Главная причина в том, что структурно-функциональные изменения ядер в ходе индивидуального развития животных достаточно глубоки. Если одни гены активно работают, другие инактивируются и «молчат». Сам же зародыш представляет собой своеобразную мозаику полей распределения таких функционально различных генов. Чем выше на иерархической эволюционной лестнице стоит животное, тем большая специализация у организма, и изменения глубже и труднее обратимы.

Кроме того, не надо забывать о несовпадении условий развития в матке разных приемных матерей. А значит, что в разных условиях развития зародыша одинаковые гены будут обнаруживать свое действие по-разному. Поскольку таких генов тысячи, то и вероятность полного сходства «клонов» будет не очень велика. Основываясь на таком заключении, специалисты считают, что полное клонирование человека, например, невозможно. «Много шума из ничего», -- так охарактеризовал Вентер, руководитель проекта по расшифровке генома человека, споры вокруг клонирования. -- Можно создать человека, который будет выглядеть, как ваш близнец, но вероятность того, что его характер и интересы будут такие же, как у вас, близка к нулю. «Ксерокопировать» людей невозможно», -- констатирует ученый.

В вопросе клонирования человека в настоящее время существует как техническая, так и большая этическая проблемы. В большом числе стран использование данной технологии применительно к человеку официально запрещено и преследуется по закону (США, Франция, Германия, Япония), причем во Франции, например, за эксперименты по клонированию человека предусмотрено тюремное заключение сроком до 20 лет. Это, однако, не исключает окончательно возможность ее использования в будущем, после детального изучения молекулярных механизмов взаимодействия цитоплазмы ооцита-реципиента и ядра соматической клетки-донора, а также совершенствования самой техники клонирования животных. В частности, в Англии уже разрешено проведение экспериментов по клонированию с использованием эмбриональных клеток человека. Вместе с тем надо помнить, что остается одно ясное и принципиальное ограничение, связанное с клонированием человека: интеллект человека клонировать нельзя.

Сенсационное научное достижение -- расшифровку генома человека -- по значимости сравнивают с расщеплением атома или раскрытием строения молекулы ДНК. Одно ясно: это открытие подняло науку на принципиально новый уровень познания.

Может быть, впервые в современной науке сложилась необычная ситуация. В работу над исключительно дорогостоящим и важным проектом включились, с одной стороны, индивидуальные исследователи, нашедшие себе мощных спонсоров, с другой стороны, учреждения и университеты, финансируемые правительствами нескольких стран. Первоначально в 1988 году средства на изучение генома человека выделило Министерство энергетики США. Одним из руководителей программы «Геном человека» стал профессор Чарльз Кэнтор. В 1990 году Джеймс Уотсон в результате лоббирования конгресса США -- добился вскоре выделения сразу сотни миллионов долларов на изучение генома человека. То была весомая добавка к бюджету Министерства здравоохранения. Оттуда деньги направлялись в ведение дирекции сети институтов, объединенных под общим названием -- Национальные институты здоровья (МН). В составе МН появился новый институт -- Национальный институт исследования генома человека, директором которого стал Фрэнсис Коллинз.

В мае 1992 года ведущий сотрудник МН Крэйг Вентер подал заявление об уходе. Он объявил о создании нового, частного исследовательского учреждения -- Института геномных исследований, сокращенно ТИГР. Ученому удалось удивительно быстро развить и вырастить свое детище. Уже первоначальный капитал института составил семьдесят миллионов долларов, пожертвованных спонсорами. ТИГР объявили неприбыльным частным институтом, не использующим свои результаты для обогащения или торговли. Практически одновременно образовали компанию «Науки о геноме человека», которая должна была продвигать на рынок данные, получаемые сотрудниками ТИГРа.

В июне 1997 года Вентер начал новые преобразования. Он вывел ТИГР из связки с «Наукой» и в 1998 году организовал в Роквилле (штат Мэриленд) свою собственную коммерческую компанию, которую назвал «Силера джиномикс». Вентер стал ее президентом, оставшись главным научным руководителем ТИГРа. Последний возглавила его жена Клэйр Фрэйзер.

Как пишет В.Н. Сойфер, «Вентер оказался исключительно умелым руководителем. Он договорился с одной из крупных компаний по производству научного оборудования, что та предоставит в прокат ТИГРу 18-20 автоматических секвенаторов-роботов, которые в первый же год работы позволят довести размер секвенируемых последовательностей до 60 миллионов оснований (одной пятой всего генома человека; такой жест был важен и для компании - лучшей рекламы своей продукции представить трудно). Позже Вентер заключил аналогичный контракт о поставке институту огромных систем усовершенствованных роботов для секвенирования протяженных кусков ДНК». В распоряжении Вентера оказался огромный парк компьютеров, который считают вторым по мощности в мире. Триста суперкомпьютеров стоимостью около 80 миллионов долларов круглосуточно обрабатывают огромные объемы данных.

В итоге работы по Проекту человеческого генотипа набрали небывалую скорость. Первоначально получить полную версию генотипа обещали к 2010 году, потом предполагалось завершить работу в 2003 году. Результата удалось добиться уже в 2001-м!

Открывая независимый центр -- Институт исследования генотипа, Вентер пообещал первым расшифровать человеческий генотип. К 2001 году удалось получить последовательность двух миллиардов знаков генотипа. Причем на установление последовательности первого миллиарда ушло четыре года, а на второй миллиард -- меньше четырех месяцев. Ускорение -- результат применения высоких технологий, например роботов.

Команда Вентера использует метод, называемый пулеметная последовательность. Взрывным способом весь генотип разделяется на семьдесят миллионов фрагментов. Далее машиной выстраивается последовательность, а порядок генотипа обрабатывается суперкомпьютером, управляемым процессором мощностью в 1,3 триллиона операций в секунду.

В 2001 году ученые определили, что генетическую программу молекулы ДНК составляют 3,2 миллиарда бесконечно повторяющихся четырех пар азотистых оснований аденина, тимина, цитозина и гуанина. Самой большой неожиданностью стал тот факт, что количество генов в наследственной программе человека оказалось не 80-100 тысяч, как ожидалось, а лишь 30-40 тысяч. Если сравнить с количеством генов дождевого червя (18 000) или плодовой мушки (13 000), то разница окажется не слишком велика! При этом у разных живых организмов выявлены сходные гены, что только подтверждает теорию молекулярной эвононии.

«Если кто-то думал, что основное отличие между биологическими видами определяется именно количеством генов, то он, скорее всего, ошибался», -- подводит итог профессор Эрик Ландер, руководитель научных исследований по геному человека в Массачусетском технологическом институте США. А Вентер не без сарказма добавляет: «Всего нескольких сотен генов, которые есть в геноме человека, нет в геноме мыши». Таким образом, первоначальные представления о том, что человек является с биологической точки зрения сложнейшей структурой, ученые подтвердить не смогли.

«Работа человеческих генов, говорят они, оказалась намного сложнее, чем они предполагали, -- пишет в журнале «Эхо планеты» Елена Слепчук. -- У нас за один и тот же признак, за одну и ту же болезнь отвечают не один, а несколько или даже группа генов. Впрочем, об этом генетики догадывались и раньше. Возможно, таким образом гены страхуют друг друга, а заодно и приобретают более широкое поле деятельности. Работу генов можно сравнить с действиями кукловодов, ведущих целый спектакль, виртуозно руководя послушными куклами и вводя по ходу действия все новые персонажи. Представим, что вместо ниточек идут генные команды на производство тех или иных пептидов, из которых впоследствии строится тело живого организма. По мнению молекулярных биологов, еще одна особенность человеческих генов состоит в том, что природа придала нам большее число так называемых генов-контролеров, которые следят за работой своих «собратьев». Действительно, зачем без конца увеличивать штат работников, если поставленной цели можно достичь путем толкового менеджмента? Вот где пример для подражания нашим управленцам. Кстати, ученые Кембриджского университета уже запланировали специальное исследование, надеясь разобраться, каким образом такая сложная структура -- человек -- спокойно управляется столь небольшим количеством генов.

А вот чем мы кардинально отличаемся от всего живого мира, так это удивительным многообразием своих белков. Сколько их, не знает никто. Генетики полагают, что отдельные белковые компоненты могут смешиваться между собой, образуя различные сочетания, подобно тому, как смешения семи основных цветов создают мириады различных красок. Биология вершится не на уровне генов, а на уровне белков, признают они. Из этого следует еще один важный вывод: не все в нашей жизни определяется генами, от окружения тоже многое зависит».

Другим сюрпризом, поставившим биологическую науку в тупик, стало наличие так называемой «молчащей» ДНК. И раньше было известно, что вдоль цепи ДНК есть участки, которые не выдают никакой информации для производства белков. Генетики называли их «генетическим мусором». И вот оказалось, что такие участки занимают 95 процентов всей ДНК! Одни биологи выдвигают гипотезу, что именно в них скрыта эволюционная информация. Другие полагают, что на эти участки возложена важная роль управления генами.

Вентер считает, что расшифровка генома человека поможет лучше понять истинные причины многих заболеваний. Это открытие позволит в недалеком будущем устранять наследственные недуги, а также создавать новые лекарства. Новые средства лечения смогут «чинить» или заменять «плохие гены». При подобном индивидуальном подходе к каждому человеку удастся продлевать человеческую жизнь.

Наряду с блестящими возможностями, которые открывает новое достижение ученых, генетический прорыв может иметь серьезные правовые, этические и социальные последствия. Генетический тест, если его проводить, покажет все заболевания, к которым предрасположен человек. Не отразится ли это на отношениях больной -- врач, если болезней все равно не избежать? А если такие данные попадут к страховым компаниям, не воспользуются ли они ими для «отлучения» потенциальных больных от финансовой помощи? И получат ли работу люди, не имеющие «чистых» генов? Тесты на эмбрионах могут привести к принудительным абортам у женщин, чей плод оказался с «плохими» генами. Нельзя исключать и жестких попыток вообще запретить иметь потомство людям с генетическими аномалиями. Появление же у них детей сразу может поставить младенцев в разряд «генетических изгоев». Профессор генетики Дэвид Альтшулер категоричен: «Уже сейчас мы должны начать переговоры с правительствами и законодателями о принятии закона, защищающего граждан от «генной дискриминации».

Биотехнология (от греч. bios — жизнь, techne — искусство, мастерство и logos — слово, учение) -- использование живых организмов и биологических процессов в производстве. Биотехнология — междисциплинарная область, возникшая на стыке биологических, химических и технических наук. С развитием биотехнологии связывают решение глобальных проблем человечества — ликвидацию нехватки продовольствия, энергии, минеральных ресурсов, улучшение состояния здравоохранения и качества окружающей среды.

С древнейших времен человек использовал биотехнологические процессы при хлебопечении, приготовлении кисломолочных продуктов, в виноделии и т. п., но лишь благодаря работам Л. Пастера в середине 19 в., доказавшего связь процессов брожения с деятельностью микроорганизмов, традиционная биотехнология получила научную основу. В 40-50-е годы 20 века, когда был осуществлен биосинтез пенициллинов методами ферментации, началась эра антибиотиков, давшая толчок развитию микробиологического синтеза и созданию микробиологической промышленности. В 60-70-е гг. 20 века начала бурно развиваться клеточная инженерия. С созданием в 1972 группой П. Берга в США первой гибридной молекулы ДНК in vitro формально связано рождение генетической инженерии, открывшей путь к сознательному изменению генетической структуры организмов таким образом, чтобы эти организмы могли производить необходимые человеку продукты и осуществлять необходимые процессы. Эти два направления определили облик новой биотехнологии, имеющей мало общего с той примитивной биотехнологией, которую человек использовал в течение тысячелетий. Показательно, что в 70-е гг. получил распространение и сам термин «биотехнология». С этого времени биотехнология неразрывно связана с молекулярной и клеточной биологией, молекулярной генетикой, биохимией и биоорганической химией. За краткий период своего развития (25-30 лет) современная биотехнология не только добилась существенных успехов, но и продемонстрировала неограниченные возможности использования организмов и биологических процессов в различных отраслях производства и народного хозяйства.

В медицине биотехнологические приемы и методы играют ведущую роль при создании новых биологически активных веществ и лекарственных препаратов, предназначенных для ранней диагностики и лечения различных заболеваний. Антибиотики — самый большой класс фармацевтических соединений, получение которых осуществляется с помощью микробиологического синтеза.

Вклад биотехнологии в сельскохозяйственное производство заключается в облегчении традиционных методов селекции растений и животных и разработке новых технологий, позволяющих повысить эффективность сельского хозяйства. Во многих странах методами генетической и клеточной инженерии созданы высокопродуктивные и устойчивые к вредителям, болезням, гербицидам сорта сельскохозяйственных растений.

Биотехнологические процессы с использованием микроорганизмов и ферментов уже на современном техническом уровне широко применяют в пищевой промышленности. Промышленное выращивание микроорганизмов, растительных и животных клеток используют для получения многих ценных соединений — ферментов, гормонов, аминокислот, витаминов, антибиотиков, метанола, органических кислот (уксусной, лимонной, молочной) и т. д.

Дальнейший прогресс человечества во многом связан с развитием биотехнологии. Вместе с тем необходимо учитывать, что неконтролируемое распространение генноинженерных живых организмов и продуктов может нарушить биологический баланс в природе и представлять угрозу здоровью человека.