
- •Новые информационные технологии
- •Часть 3. Основы математики и математическое моделирование Учебное пособие
- •Введение
- •Глава 1. Основы компьютерной математики
- •1.1. Математика и ее средства
- •1.1.1. Аксиоматический метод и структуры математики
- •1.1.2. Компьютерная математика как часть математики
- •1.1.3. Классификация средств компьютерной математики
- •1.1.4. Структура систем компьютерной математики
- •1.1.5. Обзор систем компьютерной математики
- •1.2. Система компьютерной математикиMathcad
- •1.2.1. Состав системы Mathcad и ее запуск
- •1.2.2. Основы работы с системой Mathcad 2001
- •1.2.3. Работа с текстовым редактором
- •1.2.4. Работа с формульным редактором
- •1.2.5. Операции вывода и присваивания
- •1.2.6. Шаблоны математических операторов и символов
- •1.2.7. Ошибки и прерывание вычислений
- •1.3. Простые типы данных
- •1.3.1. Числовые данные
- •1.3.2. Вещественные числа и их форматы
- •1.3.3. Комплексные числа
- •1.3.4. Строковые данные
- •1.3.5. Символьные данные и выражения
- •1.4. Сложные типы данных
- •1.4.1. Множества и подмножества
- •1.4.2. Массивы
- •1.4.3. Векторы и матрицы
- •1.5. Константы, переменные, операторы и функции
- •1.5.1. Числовые константы
- •1.5.2. Строковые константы
- •1.5.3. Переменные
- •1.5.4. Операторы
- •1.5.5. Выражения и функции
- •1.6. Основы графической визуализации вычислений
- •1.6.1. Понятия об основных геометрических объектах
- •1.6.2. Построение графиков функций одной переменной
- •1.6.3. Построение графиков поверхностей
- •1.7. Средства программирования в системеMathcad
- •1.7.1. Задание операторов пользователя
- •1.7.2. Задание программных модулей
- •1.7.3. Особенности применения программных модулей
- •Методические указания
- •2.1.2. Вычисление произведений
- •2.1.3. Вычисление пределов
- •2.3. Вычисление производных и интегралов
- •2.3.1. Определение производной и полного дифференциала
- •2.3.2. Вычисление производных
- •2.3.3. Определение интегралов
- •2.3.4. Вычисление интегралов
- •2.4. Решение уравнений и систем уравнений
- •2.4.1. Простое линейное уравнение и его решение
- •2.4.2. Решение систем линейных уравнений
- •2.4.5. Поиск всех корней степенного многочлена()
- •2.4.6. Решение систем нелинейных уравнений()
- •2.4.7. Реализация итерационных вычислений
- •2.5. Решение дифференциальных уравнений()
- •2.5.1. Основные понятия о дифференциальных уравнениях()
- •2.5.2. Решение систем оду()
- •2.5.3. Решение оду с помощью функции odesolve()
- •2.5.4. Решение жестких систем оду()
- •2.6. Решение задач оптимизации и линейного программирования
- •2.6.1. Основные понятия оптимизации
- •2.6.2. Пример оптимизации раскроя железного листа
- •2.6.3. Поиск минимума тестовой функции Розенброка
- •2.6.4. Функции maximize и minimize системы Mathcad
- •2.7. Разложение функций в ряды
- •2.7.1. Определение рядов Тейлора и Маклорена
- •2.7.2. Разложение в ряд Тейлора в системе Mathcad
- •2.7.3. Ряды Фурье()
- •2.7.4. Быстрые прямое и обратное преобразования Фурье()
- •2.7.5. Примеры преобразований Фурье()
- •2.7.6. Альтернативные преобразования Фурье()
- •2.8. Табличная интерполяция и аппроксимация
- •2.8.1. Теоретические основы интерполяции и экстраполяции
- •2.8.2. Интерполяция и аппроксимация по общей формуле Лагранжа
- •2.8.3. Полиномиальная интерполяция и аппроксимация
- •2.8.4. Кусочно-линейная и сплайновая аппроксимации в Mathcad
- •2.9. Статистическая обработка данных
- •2.9.1.Эксперименты, события и другие понятия статистики
- •2.9.2.Решение задач комбинаторики
- •2.9.3. Дискретные и непрерывные случайные величины
- •2.9.4. Законы распределения и статистические функции Mathcad
- •2.9.5. Регрессия и метод наименьших квадратов
- •2.9.6. Выполнение линейной регрессии в среде Mathcad
- •2.9.7. Полиномиальная регрессия в Mathcad
- •2.9.8. Проведение нелинейной регрессии()
- •2.9.9. Экстраполяция и предсказание
- •2.9.10. Сглаживание данных
- •Методические указания
- •10 Главных вопросов
- •Глава 3. Основы математического моделирования
- •3.1. Основные понятия моделирования
- •3.2. Основные виды моделей и их свойства
- •3.2.1. Основные виды моделей
- •3.2.2. Основные свойства моделей
- •3.3. Цели, принципы и технология моделирования
- •3.3.1. Цели моделирования
- •3.3.2. Основные принципы моделирования
- •3.3.3. Технология моделирования
- •3.3.4. Основные методы решения задач моделирования
- •Оценка обусловленности вычислительной задачи – еще одно обязательное требование при выборе метода решения и построении математической модели.
- •3.3.5. Контроль правильности модели
- •3.4. Задачи моделирования полета камня
- •3.4.1. Постановка задачи моделирования
- •3.4.2. Концептуальная формулировка задачи
- •3.4.3. Построение математической модели
- •3.4.4. Выбор метода решения
- •3.4.5. Программная реализация модели на эвм
- •3.4.6. Проверка адекватности модели
- •3.4.7. Анализ результатов моделирования
- •Методические указания
- •10 Главных вопросов
- •Глава 4. Практика математического моделирования
- •4.1. Моделирование процессов на основе известных формул
- •4.1.1. Моделирование изменения параметров атмосферы
- •4.1.2. Моделирование закона Мура
- •4.1.3. Моделирование преодоления самолетом звукового барьера
- •4.2. Моделирование на основе конечно-разностных методов
- •4.2.1. Моделирование Броуновского движения частиц
- •4.2.2. Моделирование диффузии
- •4.2.3. Моделирование торможения автомобиля()
- •4.2.4. Моделирование падения парашютиста()
- •4.2.5. Моделирование генератора на туннельном диоде()
- •4.2.6. Моделирование развития и угасания эпидемии
- •4.3. Моделирование колебательных систем
- •4.3.1. Анализ линейной колебательной системы
- •4.3.2. Анализ нелинейной колебательной системы Ван дер Поля
- •4.3.3. Моделирование системы Дафинга с внешним воздействием
- •4.3.4. Хаос и моделирование аттрактора Лоренца()
- •4.4. Моделирование рассеивания альфа-частиц()
- •4.5. Моделирование биологических и экономических систем
- •4.5.1. Модель системы «хищник-жертва» Лотки-Вольтерра
- •4.5.2. Модель системы «хищник-жертва» с логистической поправкой
- •4.5.3. Модель системы «хищник-жертва» Холлинга-Тэннера
- •4.5.4. Моделирование замкнутой экономической системы
- •4.6. Моделирование на основе линейного программирования
- •4.6.1.Оптимальные экономико-математические модели
- •4.6.2. Решение задач максимизации объема продукции
- •4.6.3. Решение задач минимизации ресурсов
- •4.6.4. Решение транспортной задачи
- •4.6.5. Задачи целочисленного программирования с булевыми переменными
- •4.7. Сетевые модели в оптимизации управленческих решений
- •4.7.1. Задача поиска кратчайшего пути
- •4.7.2. Задача о распределении потоков в сетях
- •4.8. Обработка и моделирование сигналов и изображений
- •4.8.1. Основы спектрального метода моделирования сигналов
- •4.8.2. Спектральное моделирование на основе точных формул интегрирования()
- •4.8.3. Улучшенное спектральное моделирование дискретных сигналов()
- •4.8.4. Вейвлеты - новый базис представления сигналов()
- •4.8.5. Вейвлет-преобразования()
- •4.8.6. Примеры вейвлет-обработки сигнала - временного ряда()
- •4.8.7. Анализ сигналов по вейвлет-спектрограммам
- •4.9. Обработка изображений
- •4.9.1. Средства обработки изображений
- •4.9.2. Обработка монохромных изображений
- •4.9.3. Обработка цветных изображений
- •4.9.4. Функции для работы с файлами и матрицами рисунков
- •4.9.5. Вейвлет-компрессия рисунков в пакете Wavelet Extension Pack
- •4.10.1. Подготовка к работе с матричной лабораторией matlab
- •4.10.2. Имитационное моделирование и расширение Simulink
- •Методические указания
- •10 Главных вопросов
- •Список литературы
- •Глава 1. Основы компьютерной математики 4
- •Глава 2. Основы математических вычислений 50
- •Глава 3. Основы математического моделирования 105
- •Глава 4. Практика математического моделирования 121
4.9. Обработка изображений
4.9.1. Средства обработки изображений
Обработка изображений, в частности полученных от цифровых фотокамер и сканеров, обычно выполняется с помощью специализированных программных средств, таких, как графические редакторы Paint, Ulead Photoimpact, PhotoShop, Corel DRAW и др. В них профессионально реализованы многие математические методы обработки изображений. Их можно применять, ничего не зная о сути этих методов, - так же, как можно пользоваться телевизором, не разбираясь в радиотехнике.
Пример
работы в среде графического пакета
CorelDRAW
10 дан на рис. 4.45. Из информационного окна
в правом верхнем углу видно, что в сжатом
вейвлет-формате файл занимает на диске
около 220 Кбайт, а в памяти разворачивается
до 2,2 Мбайт. Кстати, качество графических
файлов в этом формате заметно выше, чем
в других графических форматах.
Рис. 4.45. Работа с файлом вейвлет-формата WI в среде графического редактора CorelDRAW 10
Однако почти всегда при серьезной работе с графикой возникают задачи, в ходе решения которых необходимо знать суть применяемых методов и даже уметь самостоятельно реализовать некоторые из них. В этом могут помочь системы компьютерной математики, которые делают применение методов обработки изображений наглядным и доступным, хотя по эффективности работы с изображениями они заметно уступают специализированным графическим пакетам.
4.9.2. Обработка монохромных изображений
Система Mathcad в любом варианте поставки с помощью функции READBMP позволяет считывать монохромные изображения, представленные файлами с расширением .BMP. Эта функция возвращает матрицу, которая определяется размером рисунка. Каждый элемент возвращаемой матрицы соответствует пикселю исходного изображения и имеет значение кода плотности черного цвета от 0 до 255.
Над
матрицей изображения могут выполняться
все доступные для матриц преобразования.
Например, можно получить матрицуM1,
дающую негативное изображение (на рис.
4.46 в центре):
.
Рис. 4.46. Работа с монохромным изображением
С помощью функции submatrix можно из матрицы выделить подматрицу S меньшего размера, например: S := submatrix(M,60,160,50,150). Этот случай обработки изображения (вырезание части изображения) представлен на рисунке справа.
4.9.3. Обработка цветных изображений
Для
построения цветных изображений
используетсяметод разложения рисунка
на составляющие цветовой модели RGB. При
нем изображение представляется суммой
трех составляющих с красным (Red), зеленым
(Green) и синим (Blue) цветами. Соответственно
функцияREADRGB
обеспечивает считывание цветных
изображений из файлов формата BMP и
возвращает встроенный массив D,
содержащий три монохромных изображения,
представляющих яркости трех указанных
цветов (рис. 4.47).
Рис. 4.47. Пример обработки цветного изображения
С помощью функции submatrix несложно выделить из матрицы D три матрицы rc, rg и rb, несущих информацию отдельно по каждому из трех цветов. После этого можно обрабатывать их по заданному алгоритму. Такая обработка возможна и в процессе задания подмассивов. Так, на рисунке подмассив красного цвета получен возведением каждого элемента массива D в степень 1.25. Если код интенсивности цвета какого-то элемента массива становится больше 255, из него вычитается число 256. Таким образом, происходит «внезапное» резкое изменение цвета, создающее при суммировании массивов характерное, напоминающее интерференцию изменение цвета красного пятна в центре синтезированного рисунка, как показано в левом нижнем углу рисунка (к сожалению, черно-белого).
Разумеется, приведенный пример носит исключительно учебный характер и призван продемонстрировать математические основы обработки цветных изображений. Реальная обработка таких изображений всегда ведется с помощью профессионально ориентированных на это программных средств, таких, как CorelDRAW, PhotoShop, Ulead PhotoImpact и др. Они позволяют выполнять множество операций над рисунками, не задумываясь об их математической сути. Но она принципиально важна при создании новых таких операций.