
- •Реферат
- •Содержание
- •4. Обеспечение безопасности жизнедеятельности при изготовлении детали “Вал
- •Введение
- •1. Проектирование технологического процесса изготовления «Вала червячного»
- •1.1Анализ исходных данных
- •1.1.1 Анализ чертежа детали
- •1.1.2 Характеристики материала, применяемого для изготовления детали
- •1.1.3 Определение объема выпуска
- •1.1.4 Анализ технологичности детали
- •1.1.5 Формулировка основных технологических задач
- •1.2Выбор заготовки и технико-экономическое обоснование метода ее получения
- •1.3Проектирование маршрута изготовления детали
- •1.3.1 Выбор типового технологического процесса
- •1.3.2 Особенности обработки деталей на станках с чпу
- •1.3.3 Выявление комплектов основных и вспомогательных баз
- •1.3.4 Выбор технологических баз
- •1.3.5 Выбор оборудования
- •1.3.6 Маршрут обработки детали
- •1.3.7 Окончательный выбор средств технологического оснащения
- •1.3.8 Расчет режимов резания
- •1.3.9 Нормирование операций
- •2. Проектирование приспособлений
- •2.1 Технологическое приспособление - люнет
- •2.1.1 Обоснование применения
- •2.1.2 Устройство и способ использования люнета
- •2.1.3 Необходимые расчеты
- •2.2Измерительное приспособление - скоба двухконтактная
- •2.2.1 Общие положения
- •2.2.2 Схемы установки приборов активного контроля на универсальных круглошлифовальных станках
- •2.2.3 Конструкция и принцип работы прибора активного контроля
- •Настройка измерительной системы на определенный размер поверхности для шлифования производится следующим образом.
- •2.2.4 Погрешности обработки при активном контроле
- •2.2.4.1 Температурные деформации деталей
- •2.2.4.2 Погрешности размеров деталей, зависящие от запаздывания отвода шлифовального круга
- •0.004 Мм/дв.Ход.
- •2.2.4.3 Погрешность размеров деталей, связанная с формой обрабатываемых поверхностей
- •2.2.4.4 Расчет погрешности обработки при активном контроле
- •2.2.5 Расчет пружины растяжения
- •Расчетные данные по пружине растяжения n500 гост 13766 - 86
- •2.3Контрольное приспособление
- •2.3.1 Выбор универсальных средств измерения
- •2.3.2 Обоснование выбора схемы контрольного приспособления
- •2.3.3 Необходимые точностные и прочностные расчеты
- •3. Технико-экономическое обоснование проекта
- •3.1Комплексный анализ эффективности базового и разраба-тываемого вариантов технологического процесса
- •3.2 Определение капитальных вложений
- •3.3Определение текущих издержек
- •3.4 Расчет экономического эффекта
- •4. Обеспечение безопасности жизнедеятельности при изготовлении детали " Вал червячный "
- •4.1Введение
- •4.2Требования безопасности к технологическим процессам
- •4.3Анализ опасных и вредных факторов, возникающих при механической обработке материалов резанием
- •4.4Требования к материалам, производственному оборудованию,организации рабочих мест
- •4.5Промышленная санитария
- •4.5.1 Микроклимат на рабочем месте
- •4.5.3 Производственный шум Шум представляет собой сочетание звуков, различных по интенсивности и частоте в диапазоне 16-20000 Гц, не несущих полезной информации.
- •4.5.4 Вибрация на рабочем месте
- •4.6Электробезопасность
- •4.7Пожарная безопасность
- •4.8Обучение работающих безопасности труда
- •Литература:
2.2Измерительное приспособление - скоба двухконтактная
2.2.1 Общие положения
На круглошлифовальных станках наиболее широкое распространение получили устройства для контроля наружного диаметра обрабатываемой детали. Реже применяют устройства для контроля положения шлифуемого торца, расстояния между торцами или для установки стола с деталью в определенное положение относительно шлифовального круга по ее торцу.
Для измерения диаметра используют ряд схем, которые различают по количеству измерительных и базовых наконечников, соприкасающихся с обрабатываемой поверхностью.
В устройствах, работающих по трехконтактной схеме (рис. 1), скоба 8 снабжена жестко связанными с ней измерительным 1 и базовым 9 наконечниками, опирающимися на обрабатываемую поверхность и обеспечивающими строго определенное взаимное расположение оси обрабатываемой детали 2 и скобы. Второй измерительный наконечник связан со стержнем 5, который может перемещаться относительно скобы 8. Изменение размера Dобрабатываемой детали воспринимается отсчетным устройством 7 или чувствительным элементом этого устройства (индуктивным датчиком, выходным соплом и т.д.), жестко связанным со скобой.
В большинстве случаев скобу специальным устройством закрепляют на кожухе шлифовального круга. Это удобно при установке и съеме детали, так как бабка шлифовального круга отводится от детали на значительное расстояние. Такое закрепление удобно также при шлифовании одним кругом последовательно нескольких шеек обрабатываемой детали.
Вслучае шлифования с продольной подачей
устройство для установки скобы закрепляют
на столе станка или на передней (задней)
бабке, чтобы исключить относительное
перемещение скобы и детали вдоль ее
оси, влияющее на точность измерения. В
этом случае измеряют диаметр обрабатываемой
детали в одном сечении вдоль ее оси.
Конструкция устройства для установки
трехконтактной скобы на станке (рис.2.2.1)
обеспечивает необходимую степень
свободы для ее само-
Рис.2.2.1
Схема
трехконтактной
установки на поверхности детали измерительной скобы
благодаря наличию шарниров 4 и 6. Наконечники 1 и 9 к поверхности детали прижимают грузом 3 или специальной пружиной.
При контроле деталей больших размеров и особенно таких деталей, обработка которых ведется в люнетах, применяют измерительные устройства с призмой («наездники»).
Существующие устройства с призмой строят по двум измерительным схемам. На рис.2.2,априведена принципиальная схема, где косвенное измерение диаметра вала осуществляется измерительной головкой 2 по биссектрисе угла, образованного опорными поверхностями призмы 1.
Существенным недостатком этой схемы является то, что передаточное отношение к отклонениям от правильной геометрической формы (овальность, огранка) оказывается большим, чем к изменению диаметра вала. Поэтому при величине овальности, например, равной полю допуска на диаметр, практически невозможно вести точный контроль обрабатываемого диаметра без применения усредняющих или вычислительных устройств.
Рис.2.2.2. Измерительные устройства с призмой: а - схема измерения вала по биссектрисе угла призмы;б- схема измерения вала перпендикулярно биссектрисе угла призмы
В другой схеме (см. рис.2.2, б) косвенное измерение диаметра осуществляют по линии, перпендикулярной биссектрисе угла между опорными поверхностями призмы 1, измерительной головкой 2 с помощью передающего рычага 3.
Передаточное отношение такой схемы к овальности, огранке практически равно передаточному отношению при измерении диаметра вала. Поэтому эта схема обладает более высокими метрологическими данными.
В случае контроля длинных деталей, обрабатываемых с продольной подачей, или деталей с несколькими обрабатываемыми шейками измерительные устройства типа «наездники» обычно крепят к кожуху шлифовального круга. При этом измерительное устройство будет непрерывно вести контроль по всей шлифуемой длине детали.
В других случаях устройства крепят к столу станка или к передней бабке станка.
К преимуществам трехконтактной схемы следует отнести независимость показаний измерительного устройства от изменения взаимного положения обрабатываемой детали и узлов станка, так как измерительные устройства базируются непосредственно на измеряемой поверхности.
Схема позволяет использовать в качестве отсчетных устройств сравнительно простые измерительные головки и индикаторы с механической передачей, так как конструкция скобы (призмы) позволяет без особых затруднений вынести эти головки из зоны обработки для исключения загрязнения и для удобства отсчета показаний.
К недостаткам следует отнести трудность автоматизации ввода измерительной скобы в рабочее положение и ее вывод, необходимость в значительном ходе при вводе и выводе скобы для установки и съема обрабатываемых деталей на станке, затруднения в обработке с продольной подачей при обычном закреплении скобы на кожухе шлифовального круга.
В устройствах, работающих по двухконтактной схеме (рис. 3), измерительные наконечники 1 и 3 закреплены на каретках (рычагах) 5 и 6, позволяющих наконечникам следить за изменением обрабатываемого размера детали 2. С одной из кареток связано отсчетное устройство 4 или чувствительный элемент этого устройства, а с другой кареткой - упор 7.
Рис.2.2.3. Двухконтактное измерительное устройство - двухконтактная скоба
При такой схеме случайные перемещения детали по линии измерения, вызванные силами резания или тепловыми явлениями, не влияют на результаты контроля. Влияние перемещений детали перпендикулярно линии измерения в значительной степени устраняется за счет параллельности измерительных наконечников. Двухконтактные скобы с помощью подводящего устройства 8 обычно крепят на столе станка и с помощью этих скоб контролируют деталь в одном сечении. Прямолинейная траектория ввода и вывода устройства позволяет наиболее просто их автоматизировать.
Двухконтактные измерительные схемы получили наибольшее распространение на автоматизированных станках.
При одноконтактной схеме измерений (рис.4) отсчетное устройство 2 или его чувствительный элемент закрепляют обычно на столе станка и измеряют расстояние обрабатываемой поверхности детали 1 от поверхности стола. Полагая, что высота центров в процессе обработки постоянна, можно считать, что измеряется радиус детали.
Одноконтактная
схема проста по конструкции, нет
необходимости в вводе и выводе
измерительного устройства, и отсутствуют
помехи при установке и съеме обрабатываемых
деталей.
Рис.2.2.4. Одноконтактное измерительное устройство
Недостатки этой схемы следующие. В измерительную цепь входят узлы станка (стол, передняя и задняя бабки и т. д.), и силовые и температурные деформации этих узлов полностью сказываются на точности показаний. Кроме того, на отсчетное устройство воздействует половина величины изменения диаметра, что также снижает точность измерения.