
- •1.Области рационального применения …
- •2.Влага в древесине …
- •3.Конструкционные мероприятия по защите деревянных конструкций от гниения
- •5. Защита деревянных конструкций от огня
- •7. Стеклопластики
- •8. Механические свойства при растяжении, сжатии и изгибе вдоль волокон
- •9. Работа древесины на смятие, скалывание
- •10. Длительное сопротивление древесины
- •11. Основы расчета элементов конструкций цельного сечения по предельным состояниям
- •12. Центральное растяжение
- •13. Центральное сжатие
- •14. Расчет на поперечный изгиб
- •17. Расчет сжато-изгибаемых элементов
- •19. Лобовая врубка
- •20. Соединения на шпонках и шайбах шпоночного типа
- •21. Соединения на цилиндрических нагелях
- •22. Особенности работы гвоздей
- •23. Клеевые соединения
- •25. Балки на пластинчатых нагелях (балки в. С. Деревягина)
- •26. Дощатые настилы и обрешетка
- •27. Прогоны и балки
- •29. Клееные балки
- •30. Клеефанерные балки
- •31. Клеефанерные панели покрытия
- •32. Дощатоклееные колонны
- •35. Дощатоклееные арки
- •36. Распорная система треугольного очертания
- •Арки (лекции)
- •37. Дощатоклееные гнутые рамы
- •38. Дощатоклееные рамы из прямолинейных элементов
- •39. Фермы на лобовых врубках
- •40. Треугольные металлодеревянные фермы
- •41. Металлодеревянные фермы сегментного очертания
- •42. Фермы с брусчатым верхним поясом.
- •43. Фермы на металлических зубчатых пластинах (мзп)
- •44. Шпренгельные системы
- •45. Решетчатые стойки
- •46. Обеспечение пространственной устойчивости плоскостных деревянных конструкций
- •47. Купола.
- •48. Кружально-сетчатые своды
- •49. Пневматически строительные конструкции покрытий
- •50. Светопроницаемые панели покрытий, стен и перегородок
- •51. Трехслойные панели с обшивками из асбестоцемента, фанеры, стеклопластика и винипласта
- •52. Производство клееных деревянных конструкций
- •53. Способы защитной обработки деревянных конструкций
36. Распорная система треугольного очертания
Распорную систему треугольного очертания проектируют с применением прямолинейных клеедощатых элементов, со стальной затяжкой или с опиранием непосредственно на фундаменты. Узлы в этой конструкции решают с эксцентриситетом (см. рис.VI.26),благодаря чему уменьшается расчетный изгибающий момент, который будет
где Mq — момент от поперечной нагрузки; MN — разгружающий момент от продольной силы; е — эксцентриситет.
При равномерно распределенной нагрузке
Клееный элемент проверяют на прочность и устойчивость плоской формы деформирования по обычным формулам расчета сжато-изгибаемых элементов.
К недостаткам эксцентричного решения узлов относится концентрация скалывающих напряжений в зоне опирания, что учитывается введением коэффициента kск>1.
Арки (лекции)
Треугольные распорные системы.
Применяются как ригели равных поперечников производственных зданий при пролетах до 24м. верхний пояс выполняют из одной доски по ширине до 18см, доски толстые 33мм, нижний пояс из арматурной стали, подвески устанавливаются конструктивно – гибкость пояса ≤400; высота f ≥1/7 пролета.
Эксцентричное примыкание верхних поясов к нижнему в опорных и коньковых узлах позволяет уменьшить изгибающий момент на величину Ne, чем больше эксцентриситет, тем меньше расчетный момент М. однако при увеличении эксцентриситета растут касательные напряжения по уменьшенным площадкам опирания.
Эксцентриситет должен приниматься е≤0,15h, с≤0,3h.
Расчет.
Верхний пояс проверяется на сжатие с изгибом
На действительные
касательные напряжения
-
коэф концентрации скалывающих напряжений,
зависит от глубины вреза.
Нижний пояс проверяется на растяжение с учетом концентрации напряжений в местах нарезки трубчатых муфт. Расчетное сопротивление для спаренных тяжей из двух и более стержней умножается на коэф несовместимости работы 0,85.
Пологие арки покрытий с опиранием на колонну
При пролетах до 24м их целесообразно делать двухшарнирными. При больших пролетах трехшарнирными. Пролет таких арок достигает у нас – 60м, за рубежом – 100м. поперечное сечение арок у нас в стране прямоугольное за рубежом двутавровое. При пролетах до 30м ширина сечения до 18см из одной доски, при больших пролетах заготовки склеивают по кромкам с уступом. Высоту арки в плече принимают в зависимости от назначения f=(1/2-1/8)l. Арки очерчены по кривой близкой к кривой давления, поэтому для основного загружения снега по всему пролету продольная сила меняется слабо, изгибающие моменты относительно не велики – эксцентриситеты в узлах не устраивают.
Арки строят по дуге окружности, поперечное сечение как правило постоянно по длине. В некоторых случаях по архитектурным соображениям делают серповидного очертания с переменным сечением.
Расчет.
Арки рассчитывают на нагрузки от собственного веса покрытия, на снеговую нагрузку на весь и пол пролета, ветровую нагрузку на пологие арки не учитывают, при больших высотах учитывают обязательно.
Сечение арок подбирают по формулам сжатых изгибаемых элементов.
N0 – продольная сила в ключе арки, при той же комбинации нагрузок, на которую ведется расчет m и N.
μ0 – коэф приведения расчетных длин, равен:
0,35 – симметричное загружение двухшарнирных арок;
0,58 – при несимметричном жагружении двухшарнирных арок, и любом загружении трехшарнирных;
S – длина оси арки от опоры до опоры.
Арки стрельчатого очертания с опиранием на фундаменты, с используемые как консрукции покрытия для складских помещений
Пролеты арок до 24м - это склады удобрений, от 42 до 60м на калийных заводах. Высота арки порядка половины пролета f=(1/5-1/3)l. очертание арки принимается в зависимости от соотношения распределенной нагрузки и сосредоточенной силы (вес транспортной галереи в коньке). Чем больше сосредоточенная сила, тем ближе очертание арки к треугольнику. Рассчитывается так же как пологие, но при вычислении расчетной длины μ0=0,5.