- •14.1. Общие сведения
- •14.2. Устройство трехфазной асинхронной машины
- •14.3. Вращающееся магнитное поле и его особенности
- •14.4.Режимы работы трехфазной асинхронной машины
- •14.5. Электродвижущая сила, индуктируемая в обмотке статора
- •14.6. Уравнение электрического состояния фазы статора
- •14.7. Электродвижущая сила и ток в обмотке ротора
- •14.8. Частота вращения ротора
- •14.9. Векторная диаграмма фазы асинхронного двигателя
- •14.10. Схема замещения фазы асинхронного двигателя
- •14.11. Энергетический баланс асинхронного двигателя
- •14.12. Вращающий момент асинхронного двигателя
- •14.13. Механическая характеристика асинхронного двигателя
- •14.14. Пуск асинхронного двигателя в ход
- •14.15. Рабочие характеристики асинхронного двигателя
- •14.16. Универсальная характеристика асинхронной машины
- •14.17. Методы регулирования частоты вращения асинхронных двигателей
- •14.18. Двухфазные и однофазные асинхронные двигатели
- •14.19. Индукционный регулятор и фазорегулятор
14.15. Рабочие характеристики асинхронного двигателя
Механическая характеристика наглядно показывает свойства асинхронного двигателя как части электропривода. Но для более полного выявления свойств самого двигателя служат его рабочие характеристики — так принято называть зависимости от полезной мощности Р2 двигателя на валу частоты вращения, п, вращающего момента М, коэффициента мощности cos ф> и КПД = P2/P1. Все рабочие
Так как Р2 Рмех, а Рмех = Mр, то зависимость п (Р2) —скоростная характеристика — мало отличается по форме от механической характеристики двигателя п (М), она тоже может быть названа жесткой (рис. 14.29).
Вращающий момент М, развиваемый двигателем, складывается из полезного момента М2 (преодоления нагрузки на валу двигателя) и момента холостого хода Мх. Последний затрачивается на покрытие механических потерь двигателя. Этот момент можно приближенно считать не зависящим от нагрузки двигателя. Полезный момент М2 = Р2/р, и если бы р была строго постоянна, то зависимость М2 (Р2) была бы линейна, но углоьая скорость двигателя немного уменьшается с увеличением Р2, поэтому график зависимости М2 (Р2) немного отклоняется вверх. Соответственно график вращающего момента М (Р2), складывающегося из момента холостого хода и полезного момента, пересекает ось ординат в точке, соответствующей Мх, а затем он почти прямолинеен и лишь немного изгибается вверх.
Что касается зависимости cos ф1 двигателя от нагрузки, то его изменения обусловлены следующими соотношениями. Намагничивающий ток двигателя мало зависит от нагрузки, так как ее увеличение вызывает лишь возрастание потокосцеплений рассеяния, пропорциональных токам в обмотках статора и ротора» а главный магнитный поток машины при возрастании нагрузки незначительно уменьшается. Но активный ток двигателя пропорционален его механической нагрузке. Таким образом, с увеличением нагрузки двигателя относительное значение реактивного тока быстро убывает, a cos ф! увеличивается. При холостом ходе двигателя его коэффициент мощности довольно низок — примерно 0,2. С увеличением нагрузки он быстро возрастает и достигает максимального значения (0,7—0,9) при нагрузке, близкой к номинальной. Таким образом, даже у полностью загруженного двигателя реактивный ток составляет 70—40 % тока статора.
Неполная загруженность асинхронных двигателей является одной из главных причин низкого cos ф промышленных предприятий. Естественным способом повышения cos ф является полная загрузка асинхронных двигателей. Главный магнитный лоток двигателя пропорционален напряжению на статоре (14.11 б). Намагничивающий ток, возбуждающий этот поток, при заданном значении потока обратно пропорционален магнитному сопротивлению на пути потока. В этом магнитном сопротивлении большую часть составляет сопротивление воздушного зазора между статором и ротором. По этой причине конструктор стремится сократить этот зазор до минимума, определяемого условиями подвижности в подшипниках и необходимым запасом на их износ, прогибом вала и точностью центровки. С увеличением номинальной мощности двигателя необходимый воздушный зазор возрастает значительно медленнее этой мощности, благодаря чему с повышением номинальной мощности двигателя его cos ф увеличивается. С уменьшением номинальной частоты вращения двигателя увеличивается его магнитный поток, так как при меньшей частоте вращения он индуктирует в фазной обмотке статора меньшую ЭДС. Следовательно, у тихоходных двигателей намагничивающий ток относительно больше, a cos ф существенно меньше.
Коэффициент полезного действия определяется отношением полезной мощности на валу Р2 к мощности Р1 определяющей потребление двигателем энергии из сети:
= Р2 / Р1.
Мощность Р1 равна сумме полезной мощности и мощности всех потерь в двигателе:
P1= Р2+ Рпот.
Мощность всех потерь энергии в двигателе можно разделить на постоянную составляющую, практически не зависящую от нагрузки, и переменную составляющую, зависящую от нее.
Мощностью постоянных потерь энергии в двигателе можно считать мощность потерь в сердечнике статора на гистерезис и вихревые токи и мощность механических потерь, которая определяется экспериментально из опыта холостого хода двигателя.
Мощностью переменных потерь энергии в двигателе является мощность потерь на нагревание проводников обмоток статора и ротора, она равна:
Рпр1=3rв1I21, Pпр2=т2rв2I22.
Своего максимального значения (65—95 %) КПД достигает, когда переменные потери равны постоянным (см. § 8.9). У большинства двигателей этот максимум КПД имеет место примерно при нагрузке, равной 75 % номинальной, так как двигатели проектируются с учетом того обстоятельства, что далеко не всегда они полностью загружены.